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ABSTRACT
A higher active travel speed has offsetting impacts on air pollution inhalation dose through higher
breathing rate but shorter exposure duration. The net effect of speed choice on inhalation dose for
pedestrians and bicyclists has not been established. This paper derives equations for pedestrian and
bicycle steady-state minimum-dose speed (MDS). Parameter distributions from the literature are applied
to a synthetic population of travelers to calculate individual MDS. Results strongly support the existence of
a definable MDS, which is near observed travel speeds for urban pedestrians and bicyclists. For a wide
range of travelers, the MDS is 2–6 km/h while walking and 12–20 km/h while bicycling, decreasing with
road grade at a rate similar to observed speeds. On level ground, pedestrian and bicycle MDS corresponds
to a moderate-intensity physical activity level (3–6 MET). Small deviations from the MDS have little effect,
but large deviations (by more than 10 km/h for bicycling) can more than double inhalation dose over a
fixed distance. It appears that pedestrians and bicyclists choose travel speeds that approximately minimize
pollution inhalation dose, although pollution is unlikely a primary motivation.

KEYWORDS
Air pollution; bicycle;
inhalation dose; pedestrian;
travel speed

1. Introduction

Human exposure to traffic-related air pollution in cities is a sig-
nificant public health problem (Health Effects Institute, 2010).
Disproportionately high doses of several pollutants are inhaled
during travel due to high concentrations around roadways
(Dons, Int Panis, Van Poppel, Theunis, & Wets, 2012; Fruin,
Westerdahl, Sax, Sioutas, & Fine, 2008). Inhalation doses for
active travelers (pedestrians and bicyclists) are especially high
because of high breathing rates (Bigazzi & Figliozzi, 2014; de
Nazelle et al., 2012). In addition to the objective risk, air pollu-
tion exposure is an expressed concern for travelers and a barrier
to active travel for some (Badland & Duncan, 2009).

Ventilation rate ( _VE) during active travel is influenced by
energy expenditure (often expressed as the rate of metabolic oxy-
gen consumption, _VO2), which, in turn, is influenced by the travel
speed (v), roadway environment (road grade, surface, etc.), and
other factors such as baggage and equipment mass, tire pressure,
and riding position. A higher v has offsetting effects on inhalation
dose, leading to higher _VE but shorter exposure duration.

As early as the 1950s, researchers calculated the walking
speed to minimize energy expenditure per unit travel distance
(Ralston, 1958; van der Walt & Wyndham, 1973). Those results
do not directly apply to air pollution inhalation because _VE is
not proportional to _VO2 across all activity intensities (McArdle,
Katch, & Katch, 2010; West, 2012). The relationship between
_VE and v is expected to be nonlinear because 1) _VO2 increases
nonlinearly with speed for both walking and bicycling (Kramer,
2010; Olds, 2001) and because 2) the relationship between _VE

and _VO2 is nonlinear. To the author’s knowledge, no study has
yet examined the effect of speed on inhalation dose for active
travelers while accounting for these nonlinearities.

The main objective of this paper is to determine the pedes-
trian and bicycle steady-state travel speeds that minimize air
pollution inhalation dose per unit distance. Comparing observed
active travel speeds with minimum-dose speeds (MDSs) can
provide insights into potential dose reductions through speed
moderation and allow an examination of trade-offs among
travel time, physical activity, and pollution dose arising from
travel speed choice. Equations for determining MDSs are
derived from previously established models of human ventila-
tion and energy expenditure. Parameter distributions are applied
to calculate the MDS at varying road grades for a synthetic pop-
ulation. The effects of travel dynamics (stops and accelerations)
and ground-level wind are left for future work.

2. Methods

2.1 Derivation of the minimum-dose speed

Steady-state pollution inhalation dose rate per unit distance _Id
can be expressed as a function of pollutant concentration in
breathing zone air C, ventilation rate _VE, and travel speed v,

_Id D 1
6£104

C _VE

v
(1)

with _Id in mg/m, v in m/s, C in mg/m3, and _VE in l/min. The
objective of this paper is to determine the MDS: the value of
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v > 0 at which _Id is minimized. We assume for this analysis of
active travelers that concentration is independent of speed,
dC
dv D 0, ventilation increases with speed, d

_VE
dv > 0, and there is

a positive resting ventilation rate, _VE > 0 at v D 0.
The behavior of _Id at the lower and upper extremes of the v

range 0; 1ð Þ is

lim
v! 0

_Id D 1
and

lim
v!1

_Id D lim
v!1

C
6 £ 104

d _VE

dv
:

If lim
v! 1

_Id D 0, then there is no finite MDS—increasing

speed always reduces inhalation dose over a fixed distance. Sim-
ilarly, if _VE is a linear function of v, then limv!1 _Id is a finite
positive number approached asymptotically from above, and

there is no finite MDS. If, however, limv!1 d _VE
dv D 1 , then

_Id approaches 1 at both end points of the speed range
0; 1ð Þ, and there must be a finite MDS. Assuming _Id is a con-
tinuous twice-differentiable function of v over 0; 1ð Þ, the
MDS would be at a real solution of d

_Id
dv D 0 where d2 _Id

dv2 > 0 (i.e.,
the MDS must be at a local minimum).

From Equation (1), _Id is a continuous differentiable function of
v over 0; 1ð Þ if _VE is a continuous differentiable function of v:

d _Id
dv

D 1
6£ 104

C
v

d _VE

dv
¡ _VE

v

� �
(2)

and

d2 _Id
dv2

D 1
6£ 104

C
v

d2 _VE

dv2
¡ 2

v
d _VE

dv
C 2

_VE

v2

� �
: (3)

From Equation (2), finite critical values of v (whered _Id
dv

D 0) must satisfy

d _VE

dv
D _VE

v
: (4)

Substituting Equation (4) into (3), d
2 _Id
dv2 > 0 is also satisfied

at critical values of v if d2 _VE
dv2 > 0. If d2 _VE

dv2 > 0 over v > 0 (i.e.,
_VE is a strictly convex function of v), there is at most one criti-
cal value, which is at the absolute minimum (i.e., the MDS).

Summarizing, a finite MDS exists if limv! 1 d _VE
dv D 1, and

the MDS can be found by solving for v > 0 that satisfies Equa-
tion (4), on the condition that _VE is a strictly convex function

of v over v > 0. The next step to calculate the MDS is to deter-
mine the relationship, _VE D f vð Þ.

2.2 Ventilation as a function of speed

The relationship between _VE and v is derived from previously
developed functional models of _VE, energy expenditure ( _VO2 in l
O2/min), and human external power output (P in watts). As illus-
trated in Figure 1, _VE can be expressed as a function of _VO2 or P
(A and C in the figure); _VO2, in turn, can be expressed as a func-
tion of P or v (B and E in the figure); P during bicycling can be
expressed as a function of v (D in the figure). Other intermediate
relationships are not relevant or not common in the literature
(e.g., P during level walking is nearly zero). _VE D f vð Þ is derived
from the functional combinations (paths in Figure 1): ABD (bicy-
cle), CD (bicycle), and AE (pedestrian). For example, path ABD
would lead to _VE D f _VO2 P vð Þð Þ� �

. Functional forms for A
through E are discussed in the remainder of this section.

The relationship between _VE and _VO2 (A in Figure 1) has
been modeled as linear (McArdle et al., 2010; Newstead, 1987),
log-linear (Baba, Kubo, Morotome, & Iwagaki, 1999; Baba
et al., 1996; Hollenberg & Tager, 2000; Zoladz, Rademaker, &
Sargeant, 1995), and log-log (U.S. Environmental Protection
Agency, 2009). The linear relationship only pertains to a lim-
ited range of _VO2; the _VE 6 _VO2 ratio (or ventilatory equiva-
lent) increases for _VO2 above the anaerobic or ventilatory
threshold, around 2 l O2/min (Layton, 1993; McArdle et al.,
2010; West, 2012). All three formulations of _VE D f _VO2

� �
are

explored in this analysis with parameters ax and bx where x is
the functional form, x 2 lin; loglin; logf g,

� Model Alin: _VE D alin C blin
_VO2;

� Model Aloglin: ln _VE D aloglin C bloglin
_VO2;

� Model Alog: ln _VE D alog C blogln _VO2.
Bicycling _VO2 is a linear function of P (B in Figure 1), where

d0 is the energy expenditure of unloaded bicycling [around
twice the resting metabolic rate (RMR)] and d1 is a parameter
representing human mechanical efficiency (Glass, Dwyer, &
American College of Sports Medicine, 2007):

� Model B: _VO2 D d0 C d1P.
In addition, _VE during urban bicycling has been directly

estimated from P (C in Figure 1) as
� Model C: ln _VE D g0 C g1P.

where g0 and g1 are empirical parameters (Bigazzi & Figliozzi,
2015). Bicycling P can be calculated from steady-state v
(D in Figure 1) using well-validated physical models
(Martin, Milliken, Cobb, McFadden, & Coggan, 1998;

Figure 1. Framework for deriving ventilation-speed function.
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Olds, 2001; Wilson, 2004): P D max m1v C m3v
3; 0

� �
where

m1 and m3 are parameters representing rolling resistance and
aerodynamic drag (discussed in section 2.3). This equation is
simplified to

� Model D: P D m1v C m3v
3

for v2� ¡m1

m3
in order to define a differentiable function for _VE .

Pedestrian _VO2 is commonly modeled as a quadratic function
of v (E in Figure 1),

� Model E: _VO2 D u0 C u1v C u2v
2

where ui are parameters that can depend on travel and traveler
characteristics such as body mass, road grade, RMR, and sex
(Brooks, Gunn, Withers, Gore, & Plummer, 2005; Kramer,
2010; Pimental & Pandolf, 1979).

Including the three forms of model A, seven functional
forms for _VE D f vð Þ are derived from models A through E, as
shown in Table 1. The valid speed ranges for the pedestrian
and bicycle models, respectively, are v D 0 and v2 � ¡m1

m3
. Cor-

responding expressions for d _VE
dv and d2 _VE

dv2 are given in the Supple-
mental Material, Table S1. The last column in Table 1 gives
MDS equations, the result of applying each _VE D f vð Þ to Equa-
tion (4) and rearranging to a polynomial of v. The bicycle MDS
equations are cubic (due to the third-order aerodynamic drag
term in model D), while the pedestrian MDS equations are qua-
dratic (due to the form of model E).

All _VE D f vð Þ in Table 1 are continuous and twice differen-
tiable over their speed range. In addition, if the parameters
bx; d1; g1;m3; u2f g are positive and blog > 1, all of which are

expected (see the next section on parameter values), it can be

shown that limv! 1 d _VE
dv D 1 and d2 _VE

dv2 > 0. Thus, a finite
MDS exists and can be found by solving the MDS equations in
the last column of Table 1 for v. Exactly one positive solution
to each MDS equation can be confirmed by Descartes’ Rule of
Signs (using the assumption _VE > 0 at v D 0, in addition to
the preceding parameter constraints). For the bicycle models, if

the solution to the MDS equations is in the range .0;
ffiffiffiffiffiffiffiffi¡m1
m3

q
Þ,

then the MDS is at the lower end point, v D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡m1 6 m3
p

(implying P D 0).

2.3 Parameter estimates

Parameter distributions are used to calculate MDS for a broad
variety of travelers. Age and body mass for a synthetic popula-
tion of 10,000 persons, half male and half female, are sampled
from the distributions in 2012 US population census data (US
Census Bureau, 2013). RMR, which is needed for d0 and ui, is
calculated from equations for basal metabolic rate as a function
of age, sex, and body mass (Schofield, 1985). Metabolic rate is
converted to the units of _VO2 (l O2/min) using an individual
oxygen conversion efficiency H (in l O2 per kcal) sampled from
uniform distributions of 0.19–0.20 for females and 0.20–0.22
for males (U.S. Environmental Protection Agency, 2009).

For model Alin, alin D 0 and blin is sampled from a lognor-
mal distribution with a mean of 27 and geometric standard dis-
tribution of 1.18 (Layton, 1993). For model Aloglin, bloglin is
calculated from oxygen uptake efficiency slope (OUES) as
bloglin D ln10

OUES; OUES is sampled from a normal distribution
with a mean of 2.55 and standard deviation of 1.01 (Sun, Han-
sen, & Stringer, 2012), truncated at two standard deviations
from the mean. Low values of bloglin are expected for fit individ-
uals, and high values are expected for children and persons
with heart or respiratory diseases or obesity (Baba et al., 1999;
Drinkard et al., 2007; Hollenberg & Tager, 2000; Marinov &
Kostianev, 2003; Van Laethem et al., 2005; Williamson et al.,
2012). For model Alog, blog is taken from age-specific values
ranging from 1.04 to 1.17 (U.S. Environmental Protection
Agency, 2009). aloglin and alog are not needed to calculate the
MDS but can be taken from the same references.

For model B, d0 and d1 are sampled from normal distribu-
tions with mean values taken from American College of Sports
Medicine equations for leg bicycling at 50–200 W (Glass et al.,
2007): d0 D 2�RMR and d1 D 0:011 (implying a human delta
efficiency of 26%), and standard deviations based on a coeffi-
cient of variation of 7% (Moseley & Jeukendrup, 2001). For
model C, g1 is sampled from a normal distribution with a
mean of 0.00645 and standard deviation of 0.002, truncated at
two standard deviations, based on the pooled model by Bigazzi
& Figliozzi (2015). For model D, the first-order bicycle power
coefficient is m1 D m C mbð Þg G C CRð Þ with the rider

Table 1. Ventilation as a function of speed and resulting equations for MDS.

Model Mode _VE D f vð Þ1 MDS equations2

AlinBD Bicycle alin Cblin d0 C d1 m1vCm3v
3ð Þð Þ 2d1m3v

3 ¡ d0 C alin
blin

	 

D 0

AloglinBD Bicycle exp aloglin Cbloglin d0 C d1 m1vCm3v
3ð Þð Þ� �

3m3v
3 Cm1v¡ 1

d1bloglin
D 0

AlogBD Bicycle exp alog Cblogln d0 C d1 m1vCm3v
3ð Þð Þ� �

3blog ¡ 1
� �

m3v
3 C blog ¡ 1

� �
m1v¡ d0

d1
D 0

CD Bicycle exp g0 C g1 m1vCm3v
3ð Þð Þ 3m3v

3 Cm1v¡ 1
g1

D 0

AlinE Pedestrian alin Cblin u0 C u1vC u2v2ð Þ u2v2 ¡ u0 C alin
blin

	 

D 0

AloglinE Pedestrian exp aloglin Cbloglin u0 C u1vC u2v2ð Þ� �
2u2v2 C u1v¡ 1

bloglin
D 0

AlogE Pedestrian exp alog Cblogln u0 C u1vC u2v2ð Þ� �
2blog ¡ 1
� �

u2v2 C blog ¡ 1
� �

u1v¡ u0 D 0

1Speed range: v2� ¡m1
m3

for bicycle and v> 0 for pedestrian.
2From application of _VE D f vð Þ to Equation 4; MDS is solution value of v within the speed range.
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mass m in kg, bicycle mass mb in kg, gravitation constant
g D 9:8 m/s2, road grade G (unitless), and coefficient of rolling
resistance CR (unitless). The third-order coefficient
m3 D 0:5rCDAF , with the air density r D 1:23 kg/m3, drag
coefficient CD (unitless), and frontal area AF in m2. CR, AF , and
CD are sampled from normal distributions with means of
0.004, 0.6, and 1.0, and standard deviations of 0.001, 0.1, and
0.1, respectively (Bigazzi & Figliozzi, 2015; Chowdhury &
Alam, 2012; Faria, Parker, & Faria, 2005; Martin et al., 1998;
Olds et al., 1995; Wilson, 2004). The bicycle mass mb is sam-
pled from a uniform distribution of 10%–30% of m, based on
(Bigazzi & Figliozzi, 2015; Wilson, 2004); mb (including cargo)
could vary greatly for different types of bicyclists, and more
research is needed to characterize mb and AF for utilitarian
bicyclists. Note that in model D, v2 � ¡m1

m3
is only a constraint

beyond v > 0 if G < ¡CR (i.e., only relevant on negative
grades).

For model E, 11 sets of published ui estimates for level walk-
ing and jogging (G D 0) are applied, summarized in the Sup-
plemental Material, Table S2. Four of the ui sets also apply to
positive grades (Glass et al., 2007; Kramer, 2010; Pimental &
Pandolf, 1979), and one applies to both positive and negative
grades (Kramer, 2010). Most ui are functions of other parame-
ters: RMR, m, H, G, and sex. Note that in Glass et al. (2007)
u2 D 0, which leads to a linear _VE D f vð Þ relationship for
model AlinE and hence no finite MDS. We include these ui as a
comparison case, although a linear walking energy–speed rela-
tionship is not expected to apply over about 6 km/h (1.7 m/s)
(Brooks et al., 2005).

3. Results

Figure 2 gives MDS on varying road grades for illustrative 30-
year-old male (81 kg) and female (69 kg) travelers by all seven
models in Table 1 [with mean physiology parameters from
Section 2.3 and ui values from Kramer (2010)]. Bicycle
speeds requiring power output above the model B calibration
range of 200 W are shown in a lighter shade (only relevant for
AlinBD). The lower end point constraint for bicycle speed is
apparent in Figure 2, where the minimum bicycle MDS
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡m1 6 m3
p

for all models below ¡2% grade (i.e., the down-
hill coasting speed, which increases with steeper negative
grades). Energy expenditure/speed relationships ( _VO2 D f vð Þ)

for these travelers are shown in Supplemental Material,
Figure S1.

MDS by all models in Figure 2 is within a range of reason-
able pedestrian and bicycle speeds. MDS declines with road
grade for all the nonlinear models, but the influence of grade
on MDS is notably larger for bicyclists than pedestrians. For
grades of 0%–5%, bicycle MDS declines by 1.4–1.6 km/h (kph)
per 1% grade in the log-linear models and by 0.4–0.5 km/h per
1% grade in the log models; pedestrian MDS declines by 0.07
and 0.02 km/h per 1% grade in the log-linear and log models,
respectively. Energy expenditure ( _VO2 in lpm) increases by
about 0:001vm with each 1% grade for both walking and bicy-
cling, proportional to the external vertical work rate required to
gain elevation: mgvG. Road grade has a bigger impact on bicy-
cling than walking energy expenditure and ventilation because
typical bicycle speeds are higher, and bicyclists have additional
equipment mass, both leading to a higher rate of external verti-
cal work. Further, even if the effect of grade on energy expendi-
ture were the same in absolute terms, horizontal (non-grade-
related) energy costs increase much faster with v when walking
than bicycling (see Supplemental Material, Figure S1), so the
influence of grade would be a smaller portion of the total
energy-speed and ventilation–speed relationships for walking.

All 11 sets of ui were applied to the same travelers in
Figure 2, 9 for level (G D 0) walking and 2 for level jogging
(see Supplemental Material, Table S2). Median (range) walking
MDS for the male is 3.4 (2.5–4.1) km/h by model AlinE, 4.9
(4.2–5.5) by model AloglinE, and 4.7 (3.1–6.2) by model AlogE.
Median (range) jogging MDS for the male is 10.8 (7.7–13.2)
km/h by all three models and both ui sets. The MDSs are mostly
within the speed range of ui estimation data sets, which are
about 3–8 km/h for walking and 8–13 km/h for jogging. As
noted previously, there is no finite MDS for the Glass et al.
(2007) ui by model AlinE because u2 D 0. MDS for the male
and female are similar, as can be seen in Figure 2. The standard
deviation in walking MDS among model forms for each ui set
(0.7–1.5 km/h) is slightly higher than the standard deviation in
walking MDS among ui for each model form (0.5–0.9 km/h); in
other words, the form of _VE D f _VO2

� �
has a slightly bigger

impact on MDS than the selection of ui for _VO2 D f vð Þ. As
noted previously, Alin is not expected to apply over a wide
range of energy expenditures; it is included in this analysis for
comprehensiveness but excluded from the remaining figures.

Figure 2. Pedestrian (left) and bicycle (right) MDS on varying road grades for illustrative male (solid lines, age 30, 81 kg) and female (dashed lines, age 30, 69 kg) travelers.
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The impact of deviating from the MDS on _Id while bicycling
is illustrated in Figure 3: the MDS for the same 30-year-old, 81-
kg male traveler by model CD is the black line, and the shaded
areas above and below represent factor increases in _Id from the
MDS at varying road grades. _Id doubles over a relatively wide
speed range of about §10 km/h from the MDS. Outside of this
range, _Id increases more rapidly: _Id grows from double to triple
the value at the MDS with a speed change of less than 3 km/h.
Figure 3 shows that small deviations from the MDS have rela-
tively little effect on _Id , but large deviations can lead to dramati-
cally higher inhalation doses. Even at the MDS, _Id increases
quickly with road grade; _Id at the MDS is 32%, 68%, and 200%
higher at 1%, 2%, and 5% grades, respectively, than at 0% grade
(Figure S2 in the Supplemental Material gives the inhalation
volume in liters per km on the same speed-grade plane as
Figure 3). Note that the high-speed and high-grade ventilation
estimates are above the parameter calibration range of 200 W
(included in Figures 3 and S2).

Figure 4 gives median and interquartile range (IQR) bicycle
MDS for the synthetic population (see Section 2.3), including
the same 200 W reference line from Figure 3. The MDS IQR
width is about 2–5 km/h over a wide range of grades. The

widest IQR is for the log-linear models (AloglinBD and CD), for
which the main influencing factors on MDS are CD, bloglin, and
g1 (the MDS at zero-grade changes by 1–3 km/h over the IQR
of these factors). The main influencing factors for the other two
models (AlinBD and AlogBD) are m, CD, and d0 (the MDS at
zero-grade changes by about 1 km/h over the IQR of these fac-
tors). Age, RMR, and Cr are comparatively minor factors: MDS
changes by less than 0.5 km/h over the IQR of these factors.
For all three pedestrian models using ui from Kramer (2010),
the MDS IQR width is 1–2 km/h, stable across grades and most
sensitive to m, RMR, d0, and bloglin.

Metabolic Equivalent of Task (MET) is a standardized
measure of energy expenditure, normalized to RMR; light-,
moderate-, and high-intensity physical activity have been delin-
eated by thresholds of 1.5, 3, and 6 MET, respectively (U.S.
Environmental Protection Agency, 2009). Figure 5 gives
median and IQR of MET at bicycle MDS for the synthetic pop-

ulation, with MET D _VO2

RMR
and _VO2 calculated from model

BD. At zero grade, MET at MDS for most of the population by
all models is within the moderate-intensity physical activity
range (3–6 MET). As MDS falls with road grade (Figure 4),
MET at the MDS still increases; MET at the MDS is in the
high-intensity physical activity range (MET > 6) for most of
the population on positive grades over 2% or 3%. The median
population value for MET at MDS by all models is within a
range of less than 2 MET for road grades up to 2%.

For zero-grade walking, MET at the MDS is also mostly
within the moderate-intensity physical activity range by all
three models; median (IQR) MET at MDS for the synthetic
population by models AlinE, AloglinE, and AlogE is 3.6 (2.3–5.0),
4.4 (2.8–5.7), and 4.4 (2.9–6.1), respectively, using ui from
Kramer (2010). MET at MDS is less affected by grade for walk-
ing than for bicycling (as discussed in Figure 2); at 5% positive
grade median (IQR) MET at MDS is still mostly in the moder-
ate-intensity physical activity range: 4.2 (2.7–5.7), 4.8 (3.1–6.1),
and 5.0 (3.3–7.0) by models AlinE, AloglinE, and AlogE, respec-
tively. Across a grade range of ¡2% to 8%, the median popula-
tion value for MET at walking MDS by all three models is
within a range of less than 1 MET. The width of the population
IQR for MET at walking MDS is about 3 MET (consistent
across grades), which is slightly wider than the population IQR
for MET at bicycling MDS (Figure 5).

Figure 4. Median (lines) and IQR (shading) of bicycle MDS for synthetic population.

Figure 3. Factor increases in inhalation dose at bicycle speeds above and below
the MDS (male traveler, age 30, 81 kg).

Figure 5. Median (lines) and IQR (shading) of MET at bicycle MDS for synthetic
population, with physical activity thresholds at 1.5, 3 and 6 MET.
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Table 2 gives zero-grade MDS and MET at MDS by sex and
age for the synthetic population, using models AlogBD and
AlogE, with ui from Kramer (2010). For adults aged older than
20 years, MDS is similar between the sexes and has a narrow
IQR of at most 2 km/h for both modes. Bicycle MET at MDS
for adults is also similar between the sexes and has a narrow
IQR of at most 0.4 MET; walking MET at MDS is higher for
women and has a wider IQR. MET at MDS for adults is slightly
higher for walking than bicycling but similar between the
modes and generally in the moderate-intensity physical activity
range of 3–6 MET. Travelers aged younger than 20 years, which
include children, have lower MDS and MET at MDS than those
older than 20 years, primarily due to lower body mass.

4. Discussion

The MDS equations and results in the previous sections
strongly support the existence of a finite MDS for pedestrians
and bicyclists. Although a simple linear formulation of the
_VE D f vð Þ relationship (model AlinE with u2 D 0) leads to an
infinite walking MDS, nonlinearities are known to exist toward
the upper range of walking speeds in both _VE D f _VO2

� �
and

_VO2 D f vð Þ (Brooks et al., 2005; Kramer, 2010; McArdle et al.,
2010). The Alin model is not expected to be representative for
exercise intensities over about 6 MET. Even using a linear
_VE D f _VO2

� �
function, a finite bicycle MDS still exists because

of the nonlinear influence of aerodynamic drag (model AlinBD
in Figure 2).

Zero-grade bicycling MDS for a wide range of travelers is
between 12 and 20 km/h (Figure 4). Average travel speeds for
urban bicyclists have been reported in the range 10–25 km/h,
with the upper end being more representative of cruising
speeds excluding stops (Allen, Rouphail, Hummer, & Milazzo,
1998; Bernardi & Rupi, 2015; Bigazzi & Figliozzi, 2014, 2015;
Broach, Dill, & Gliebe, 2012; Int Panis et al., 2010; Jensen, Rou-
quier, Ovtracht, & Robardet, 2010; Menghini, Carrasco,
Sch€ussler, & Axhausen, 2010; Nyhan, McNabola, & Misstear,
2014; Parkin & Rotheram, 2010). Thus, urban bicyclists likely
ride near to or slightly faster than their MDS, with only minor
increases in _Id from the minimum possible value for a given
pollutant concentration (Figure 3). Zero-grade walking MDS
for a wide range of travelers is between 2 and 6 km/h. Self-
selected walking speeds have been reported as 4–6 km/h, again
within the upper range of the MDS (Blessey, Hislop, Waters, &
Antonelli, 1976; Browning, Baker, Herron, & Kram, 2006; Cun-
ningham, Rechnitzer, Pearce, & Donner, 1982; Levine &

Norenzayan, 1999; Li et al., 2012). Furthermore, speed reduc-
tions of about 0.05 and 1.4 km/h per 1% grade have been
observed for walking and bicycling, respectively (Minetti, Bol-
drini, Brusamolin, Zamparo, & McKee, 2003; Parkin & Roth-
eram, 2010), remarkably close to the rates at which the MDS
falls with road grade by the nonlinear models in this study.
Self-selected jogging speed is about 10 km/h (Minetti et al.,
2003), again near the MDS.

Adults walking or bicycling on level ground are expected
to generate the MDS at a moderate-energy intensity level
(3–6 MET). MDS is lower for bicyclists on grades over 2%–3%
but at a high-energy intensity level (over 6 MET), pedestrian
MET at MDS increases only slightly with grade. Utilitarian
walking and bicycling are typically at 4–7 MET, while sport
bicycling and running are at higher intensities of up to 16 MET
and those walking, jogging, and bicycling for regular exercise
are likely in between (Ainsworth et al., 2011; U.S. Environmen-
tal Protection Agency, 2009).

Variability in the calculated MDS in this study is due to
both model forms and interpersonal parameter differences.
For a particular traveler, walking MDS varies within a range
of about 3 km/h with different model forms and ui sets; bicy-
cle MDS varies within a range of about 5 km/h with different
nonlinear model forms. For a particular model form, popula-
tion IQR width is 1–2 km/h for walking and 2–5 km/h for
bicycling. Other than road grade, the main interpersonal
parameters correlated with MDS are body mass, slope coeffi-
cients in the ventilation–energy expenditure models (bi), and
drag coefficient for bicycles. Higher m increases MDS, while
higher bi and Cd decrease MDS, and all three factors increase
inhalation dose at a given speed. As noted previously, higher
bi values are associated with children, less fit travelers, and
travelers with obesity or respiratory diseases, which suggests a
potential disparity in the effects of active travel speed on pol-
lution dose and health.

More fit travelers are expected to have a lower bi, which
leads to lower _Id but higher MDS. Consistent with this effect of
fitness on MDS, self-selected walking speed is positively associ-
ated with fitness (Cunningham et al., 1982). An IQR reduction
in bloglin (1.2–0.7) is associated with a 3 km/h higher
bicycle MDS (14–17 kph); observed distributions of urban
bicycle speeds across individuals (Bernardi & Rupi, 2015; Int
Panis et al., 2010) suggest an IQR width of about 4 km/h.
Hence, if faster bicycling is associated with fitter bicyclists,
urban bicycle speeds could roughly coincide with MDS across
fitness levels.

Table 2. Zero-grade MDS and MET at MDS for synthetic population by age and sex.

Bicycle1 Pedestrian2

Sex Age MDS median (IQR) MET at MDS median (IQR) MDS median (IQR) MET at MDS median (IQR)

Male <20 13.3 (11.7–14.8) 3.4 (3.3–3.6) 3.4 (2.6–4.5) 2.3 (1.3–3.6)
Male 20–60 14.5 (13.8–15.3) 3.6 (3.4–3.8) 4.5 (3.5–5.4) 4.1 (2.8–5.5)
Male >60 14.4 (13.5–15.3) 3.9 (3.7–4.1) 4.8 (4.0–5.7) 5.1 (3.7–6.7)
Female <20 12.5 (11.2–13.8) 3.4 (3.3–3.6) 3.5 (2.4–4.4) 3.0 (1.6–4.8)
Female 20–60 13.1 (12.4–13.9) 3.6 (3.5–3.8) 4.3 (3.2–5.4) 5.1 (3.0–7.3)
Female >60 13.3 (12.6–14.1) 3.9 (3.7–4.1) 4.7 (3.6–5.5) 5.9 (4.1–7.8)

1Model AlogBD.
2Model AlogE using ui from Kramer (2010).
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Individuals bicycling for exercise or sport likely exceed their
MDS regardless of fitness level; 95th percentile MDS only
reaches 19 km/h at zero grade (4 km/h above the median).
Energy expenditure increases faster than inhalation dose with
speeds up to about 50% over the MDS, after which dose
increases more rapidly. Both energy expenditure and inhalation
dose more than double with a 70% speed increase from the
MDS, and increase by a factor of four with a doubled speed. In
percentage terms, the inhalation dose penalty of exceeding the
MDS is comparable to the exercise gains, although the trade-off
in terms of health outcomes cannot be directly compared with-
out further assessment, which is left for future work.

Urban active travelers potentially weigh many factors
when choosing a speed including travel time, energy expen-
diture, comfort, and perceived safety; the full set of prefer-
ences leading to observed active travel speeds has not been
established (Browning et al., 2006; El-Geneidy, Krizek, &
Iacono, 2007). Air pollution inhalation is unlikely to be a
primary motivation, and yet utilitarian pedestrians and
bicyclists appear to choose approximately minimum-dose
travel speeds. One possible explanation is similar effects of
v on _VO2 and _VE and a propensity to minimize total trip
energy expenditure.

The walking MDS is supported by a similar “optimum”
speed for minimum energy expenditure _VO2

� �
per unit dis-

tance, reported in past studies as 4–5 km/h (Browning et al.,
2006; Ralston, 1958; Saibene & Minetti, 2003; van der Walt &
Wyndham, 1973). The existence of a MDS partially contra-
dicts two previous studies that concluded faster walking and
bicycling leads to lower absorbed doses of air pollution
(McNabola, Broderick, & Gill, 2007; Nyhan et al., 2014). The
discrepancy could be due in part to speed comparisons in
those studies near to the MDS (5–8 km/h walking and
8–20 km/h bicycling). In addition, McNabola et al. (2007)
applied a linear _VE D f vð Þ function, which generates an infi-
nite MDS as discussed in Section 2; the bicycle _VE D f vð Þ
function was regressed on data from a single subject in a labo-
ratory, and so the influence of aerodynamic drag (a key non-
linearity) was likely not included. Nyhan et al. (2014)
calculated bicyclist _VE using a neural network model for
which the main _VE D f vð Þ relationship was also linear
(although interaction terms of v with road grade and wind
were included as smoothed functions). Both studies modeled
absorbed dose rather than inhaled dose, but in McNabola
et al. (2007), absorbed dose was proportional to cumulative
breath volume and hence inhaled dose. Nyhan et al. (2014)
modeled absorbed dose of particulate matter, for which the
MDS could only be lower than for inhaled dose because depo-
sition fraction of inhaled particulate matter is equal or higher
at higher _VE (Daigle et al., 2003; L€ondahl et al., 2007).

The broad set of models and parameters used in this
paper indicate the existence of minimum-dose active travel
speeds near to observed speeds, but a number of uncertain-
ties and limitations require further study. Physical and
physiological parameters (body mass, drag coefficient, bi

values) are key uncertainties in this analysis because little
information exists on their distributions for urban travelers.
Individual parameter distribution estimates were used in a
synthetic population analysis, but the joint distributions are

unknown, and active travelers likely vary in certain character-
istics from the broader population. For example, fitter individ-
uals might be more likely to engage in active travel and have
lower values of both bi and m, with offsetting impacts on
MDS.

Another source of uncertainty is the pedestrian energy
expenditure parameters (ui), which few studies have quanti-
fied at varying grade (see Supplemental Material, Table S2).
Power requirements for bicycling at varying speed and grade
are more readily computed, but _VO2 and _VE at high power
output need further investigation. This analysis assumed that
human mechanical efficiency (reflected in d1) was indepen-
dent of power output. If efficiency were to decrease with
power, d1 would increase and the MDS would decrease (and
vice versa)—but the relationship between power and effi-
ciency is not well established and may be influenced by equip-
ment, cadence, training, and other factors (Faria et al., 2005;
Hopker, Coleman, & Wiles, 2007; Moseley, Achten, Martin, &
Jeukendrup, 2004; Moseley & Jeukendrup, 2001). The bicycle
_VO2 formulation also neglects the potential for insufficient
bicycle gearing to limit extreme power/speed combinations at
moderate cadences.

This study was limited to steady-state MDS, which
excludes stop/start events during a trip; speed dynamics will
be addressed in future work. The optimal target cruising
speed when accelerating from a stop would likely be lower
than the steady-state MDS due to the additional energy
input required. Ground-level wind was also excluded from
this analysis; the MDS would be lower for someone travel-
ing in a headwind and higher for someone in a tailwind.
The wind effect would apply to both pedestrians and bicy-
clists, although no known model of walking _VO2 explicitly
includes wind. The effect of active travel speed on absorbed
dose will also be examined in future work. As noted previ-
ously for particulate matter, due to increasing deposition frac-
tion with exercise, MDS is potentially lower for absorbed dose
of particulates than inhaled dose. On the other hand, blood
concentrations of volatile organic compounds can reach equi-
librium with exposure air over the course of a trip, which
would have the opposite effect of reducing absorbed fraction
of inhaled mass with exercise (Astrand, 1985; Bigazzi, Fig-
liozzi, Luo, & Pankow, 2016), and potentially lead to a higher
MDS for absorbed dose than inhaled dose. For other pollu-
tants such as carbon monoxide, absorbed fraction of inhaled
mass is unlikely to be influenced by exertion level, and so,
MDS would be similar for absorbed and inhaled doses.

Lastly, this paper examines the impact of speed on active
traveler pollution dose, but many other factors also influence
pollution dose and related health impacts. For example, pollut-
ant concentrations, C in Equation (1), vary substantially
throughout an urban road network and are affected by meteo-
rology, road infrastructure, near-road land use, and many other
factors. A broad range of strategies can be used to reduce air
pollution risks for active travelers, including development of
urban transport networks with more separated bicycle and
pedestrian infrastructure, pollution-specific routing recommen-
dations for active travelers, and a general reduction in emis-
sions through vehicle, fuel, and travel controls (Bigazzi &
Figliozzi, 2014; Kaur, Nieuwenhuijsen, & Colvile, 2007).
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