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Abstract
This paper presents a utility-based behavioral model of bicycle speed choice. A mathe-
matical framework is developed with travel time, energy expenditure, and control factors. 
Observational speed data are used to calibrate the model and estimate marginal rates of 
substitution between energy expenditure and travel time. The model is validated by apply-
ing it to predict speed changes on pedal-assist electric bicycles. This paper lays a founda-
tion for further development of operational active travel speed and joint speed-route choice 
models, which can lead to more sensitive and behaviorally-grounded operations, microsim-
ulation, and mode choice models. In addition, the findings have implications for modeling 
the effects of emerging bicycle technologies. Further research is needed to calibrate the 
model for a broad population of travelers.

Keywords  Bicycles · Electric bicycles · Energy expenditure · Speed choice · Safety · 
Utility maximization

Introduction

Many cities have implemented programs and policies to increase active travel (primarily 
walking and bicycling) as means of urban transportation. Correspondingly, transporta-
tion professionals have growing needs for analysis techniques to forecast an array of active 
travel behaviors, including mode, route, and speed choices. Most existing analysis tools 
address mode choice, but many treat travel speed as constant and assume that bicyclists and 
pedestrians choose shortest-distance routes. Better operational-level models of intra-modal 
active travel behavior are needed for a variety of purposes: predicting traffic volumes for 
infrastructure and service planning, assessing the impacts of route quality on mode and 
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destination choices, quantifying health benefits and risks of active travel, and assessing 
active travel as a means to enliven public spaces and spur commercial activity, among 
other applications (Ishaque and Noland 2008).

Utility-based models of bicycle routing behavior have recently been developed that 
include the influences of route attributes such as road grade, facility type, and trip type 
(Broach et  al. 2012; Hood et  al. 2011; Sener et  al. 2009). These models neglect endog-
enous speed choice, and combine the disutility of additional travel time due, for example, 
to hill ascents and road crossings with the utility effects of other factors such as energy 
expenditure, comfort, and safety. Conflating these effects into a single parameter is behav-
iorally ambiguous. It can also bias forecasts, particularly if the relationships among these 
factors change due to new intersection treatments or the proliferation of electric bicycles, 
for example. Modeling joint speed and route choices could lead to more accurate, sensitive, 
and useful analysis tools. Bicycle speed choice is also important for roadway operations, 
developing microsimulation models (Twaddle et al. 2014), and estimating and ameliorating 
crash risks and health impacts.

For motorized modes, it has generally been assumed that travel speed is chosen to 
minimize travel costs. When travel time is assumed to be the only cost this implies that 
the driver chooses the highest feasible speed consistent with speed limits and road condi-
tions. A more comprehensive approach includes vehicle operating costs, which increase 
with speed above a certain level. (Mohring 1965) used the trade-off between travel time 
and vehicle operating costs to estimate the value of travel time. Later studies accounted 
for additional factors such as safety and the risk of traffic citations (MacFarland and Chui 
1987). Speed choice modeling was also used in the development of a behavioral traffic 
congestion model in a series of papers in the early 2000’s with the goal of “endogeniz-
ing speed choice” (Verhoef and Rouwendal 2004). These motorized speed choice models 
assume that observed speeds correspond to an equilibrium in which motorists are minimiz-
ing some private travel cost function.

For active travelers, speed choice is more complex because it can involve non-negli-
gible trade-offs among travel time, energy expenditure, safety, and stability, among other 
potential factors. A number of papers have measured walking and bicycling speeds in vari-
ous conditions (Hediyeh et  al. 2014; Landis et  al. 2004; Minetti et  al. 2003; Parkin and 
Rotheram 2010), and several empirical regression models have been developed to identify 
the external factors correlated with active travel speed, such as road grade, facility type, 
trip type, and traveler gender (El-Geneidy et al. 2007; Silva et al. 2014; Strauss et al. 2016). 
These studies are informative, but similar to the route choice models they conflate the 
effects of individual factors that can be expected to influence speed choice, such as time 
and energy expenditure. Other research has examined aggregate flow-constrained bicycle 
traffic characteristics as analogous to motorized traffic flow theory (Jiang et al. 2016; Jin 
et al. 2015; Navin 1994; Zhang et al. 2013). Ishaque and Noland (2008) propose a theo-
retical framework in which a pedestrian’s speed choice is determined by their capabilities, 
their value of time, and the potential risks they take. The authors suggest that pedestrians 
make trade-offs among these factors when choosing a travel speed, but do not specify the 
model beyond this general identification. To our knowledge, no studies have gone beyond 
this in specifying a behavioral model of active travel speed choice.

This paper frames and formulates a utility-based bicycle speed choice model for free-
flow conditions. A mathematical framework is presented, and trade-offs among energy 
expenditure, travel time, and stability/risk are identified and discussed. Observational 
data from past research are used to estimate marginal rates of substitution between energy 
expenditure and travel time. The model is validated by applying it to speed changes on 
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electric bicycles. This paper lays the foundation for further development of operational 
active travel speed and joint speed-route choice models. In addition, by quantifying the rate 
at which bicyclists trade off time and energy, the findings have implications for bicycle net-
work planning and for modeling the effects of emerging bicycle technologies.

An analytical speed choice model

This section formulates a model in which a traveler chooses bicycle speed to maximize 
expected utility by considering trade-offs among several factors, similar to the generalized 
cost minimization models of (MacFarland and Chui 1987; Verhoef and Rouwendal 2004) 
and the formulation of (Ishaque and Noland 2008). Building on those models, utility U 
from travel over a fixed (unit) distance is specified as a function of travel time t , energy 
expenditure rate e , and bicycle control c (all of which depend on speed v ), as well as the 
static positive utility derived from making the trip by bicycle � (which is assumed to be suf-
ficiently large to make the trip worthwhile):

Variable c reflects the rider’s ability to control the bicycle and avoid a crash or fall. This 
depends on various factors including stability (related to balance and steering) and colli-
sion avoidance (related to perception-reaction time, braking distance, and potential crash 
severity). In general, the traveler`s choice of speed will vary with the road grade, traffic sig-
nals, wind and other factors. Changes in speed are subject to short time lags because of the 
mass of the bicycle and rider. The dynamics of speed adjustment are not considered here, 
but desired/target speed is an important input for modeling acceleration and deceleration 
events (Ma and Luo 2016; Twaddle and Grigoropoulos 2016).

The rider’s preferred speed is derived by taking the total derivative of U with respect to 
speed v

where MUt =
�U

�t
 , MUe =

�U

�e
 , and MUc =

�U

�c
 are the marginal utilities of travel time, 

energy expenditure, and control, respectively. At a steady-state equilibrium, utility maximi-
zation implies a preferred speed, v∗ , i.e., the “cruising speed”, unimpeded by other vehicles 
and travelers. If dU

dv
 is continuous and non-increasing with v for v > 0 (i.e., U is concave), 

there is a single utility-maximizing speed v∗ that satisfies the first-order condition dU
dv

= 0.1
The trade-off between travel time and energy expenditure can be measured with the 

marginal rate of substitution,

At equilibrium speed v∗ , dU
dv

= 0 and MRSet can be calculated by rearranging Eq. (2):

(1)U = f (t(v), e(v), c(v), �)

(2)
dU

dv
= MUt

dt

dv
+MUe

de

dv
+MUc

dc

dv

(3)MRSet =
MUe

MUt

.

(4)MRSet = −

dt

dv

de

dv

−
MUc

MUt

dc

dv

de

dv

1  A cost-minimizing alternative formulation could similarly be derived; the utility approach is used here 
because none of the factors that determine speed is measured in monetary units.
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In the next three subsections we discuss each term on the right-hand side of Eq. (2).

Travel time

The relationship between steady-state speed (in m/s) and per-km travel time (in min/km) is 
t =

1000

60

1

v
 , leading to

The marginal utility of travel time for a given trip is assumed to be a constant, MUt < 0 , 
consistent with (Börjesson and Eliasson 2012) for trips up to 40  min.2 Consequently, 
MUt

dt

dv
 is assumed to be positive, differentiable, and decreasing with v for v > 0.

Energy expenditure

Following (Glass and Dwyer 2007) the steady-state rate of energy expenditure while bicy-
cling, e , in kcal/min is modeled as a linear function of the tractive power transferred to the 
bicycle, p , in watts (W):

The intercept term, �0 , is positive because a bicycle rider has some base level of energy 
expenditure even while coasting. The power required to maintain a steady bicycle speed 
can be computed from two parameters representing rolling resistance and road grade 

(
�1

)
 

and aerodynamic resistance 
(
�3

)
,

(The second coefficient is called �3 rather than �2 to highlight that the second term var-
ies with speed cubed rather than speed squared). Parameters �1 and �3 in turn depend on 
roadway and traveler characteristics. Parameter �1 is specified by the function

where �1 is measured in W s/m, rider mass m in kg, bicycle mass mb in kg, gravitational 
acceleration g = 9.8 m/s2, road grade G is unitless, and coefficient of rolling resistance CR 
is unitless. Parameter �3 is specified by the function

where �3 is measured in W s3/m3, air density � = 1.23 kg/m3, drag coefficient CD is unit-
less, and frontal area AF is measured in m2 (Bigazzi and Figliozzi 2015; Martin et al. 1998; 
Olds 2001; Wilson 2004). If the bicyclist is coasting or braking on a negative grade suffi-
ciently steep to overcome resistance forces, then v2 ≤ −�1

�3

 and e = �0 . Otherwise, p > 0 and 

e = �0 + �1
(
�1v + �3v

3
)
 , and the bicyclist must expend more energy to maintain higher 

dt

dv
=

−1

0.06v2
.

e = �0 + �1p.

p = max
(
0,�1v + �3v

3
)
.

�1 =
(
m + mb

)
g
(
G + CR

)

�3 = 0.5�CDAF

2  The value of travel time is highly heterogeneous and context-dependent (Small 2012), but this model only 
requires MUt to be independent of trip duration, not constant across modes or persons. There is some evi-
dence of positive utility of travel time in certain situations, particularly during active travel (Mokhtarian 
et al. 2015). However, for utilitarian bicycle trips the marginal utility of travel time is expected to be nega-
tive (Börjesson and Eliasson 2012).
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speeds at a given road grade. Parameters �0 , �1 , and �3 are all expected to be positive, as 
described below; the sign of �1 depends on the road grade G . This formulation of e(v) 
assumes a bicycle with sufficient gearing, and a rider with sufficient skill, to achieve any 
desired power/speed combination at a moderate cadence.

From this formulation of e(v),

If �1 ≥ 0 , Eq. (5) simplifies to de
dv

= �1
(
�1 + 3�3v

2
)
 ; otherwise, there is a discontinuity 

at v =
√

−�1

�3

 where de
dv

 jumps from 0 to −2�1�1 (a positive number). Hence, de
dv

 is non-nega-

tive and non-decreasing with v.
MUe is the traveler’s marginal utility of energy expenditure, which can be positive or 

negative. It depends on comfort or discomfort experienced during and after exercise of 
increasing intensity, as well as expected future benefits from improved cardiovascular 
health and physical appearance. We are not aware of any studies of MUe during active 
travel. Large inter- and intra-person variability can be expected, depending on a traveler’s 
physical condition, recent physical activity, weather, clothing, and other factors. MUe is 
likely to be higher for active travelers according to some attitudinal research (Gatersleben 
and Appleton 2007; Heinen et al. 2010).

We assume that, for a given traveler, MUe is a non-increasing function of e , and nega-
tive at very high values of e reflecting discomfort from extremely high workloads. If MUe 
is positive at low values of e , there exists an ideal energy expenditure level, e∗ , at which 
MUe = 0 . Similar to the treatment of MUt , we assume that MUe is constant throughout a 
trip, and hence independent of trip duration. In practice, it could decrease as a traveler tires 
or becomes more uncomfortable in very hot or very cold weather.

In summary, MUe
de

dv
 can be positive or negative, and if 𝜇1 < 0 it has a discontinuity at 

v =
√

−�1

�3

 . If MUe < 0 , MUe
de

dv
 is non-positive and non-increasing with v.

Control

There has been little research on either the effect of speed on control 
(

dc

dv

)
 or the marginal 

utility of control 
(
MUc

)
 . Consequently, it is more difficult to formulate the influence of 

control on speed choice than the influence of travel time and energy. Given our focus on the 
time/energy trade-off, we make several general assumptions about the product MUc

dc

dv
 for 

tractability, and leave a more detailed exploration for future work. Note that even if an 
objective function relating speed to crash risk exists, it may not accurately describe indi-
viduals’ perceived risks which determine their preferred speeds. Indeed, bicyclists may 
derive utility from the sensation of motion or speed on a bicycle (Gatersleben and Apple-
ton 2007; Mokhtarian et  al. 2015). Such a preference is not explicitly modeled here 
although it could be included as another variable in the utility function.

In the model, speed is influenced by control via the term MUc
dc

dv
 , which represents the 

marginal change in control-related utility with speed. Control-related utility is expected 
to be low at very slow speeds due to the difficulty of maintaining balance, maintaining a 
straight course, shifting gears, and avoiding coming to a dead stop on a steep hill. Con-
trol-related utility is also low at high speeds due to short crash avoidance times, high 

(5)
de

dv
=

{
𝛿1
(
𝜇1 + 3𝜇3v

2
)
, v2 >

−𝜇1

𝜇3

0, otherwise
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potential crash severity, loss of traction on slippery or loose surfaces, and potential loss 
of contact with the ground on rough surfaces. In light of these observations we define 
three regions of speed for subsequent analysis:

	 I.	 Low-speed instability, where MUc
dc

dv
> 0 (higher speed yields more control and 

related utility),
	 II.	 Mid-speed stability, where MUc

dc

dv
≈ 0 (control and related utility are not strongly 

influenced by speed),
	 III.	 High-speed crash risk, where MUc

dc

dv
< 0 (higher speed increases crash risk and 

decreases control-related utility).

These regions define an inverted “U”-shaped function relating speed to control. For 
convenience we assume that MUc

dc

dv
 is continuous and non-increasing for v > 0.

Equilibrium conditions

From the preceding formulation, dU
dv

 is defined over v > 0 , but has a discontinuity at 
v =

√
−�1

�3

 if 𝜇1 < 0 . Thus, the maximum utility occurs at a speed v∗ where either dU
dv

= 0 

or v∗ =
√

−�1

�3

 . The time and control terms of Eq. (2) are decreasing over v > 0 , and the 

energy term is non-increasing when MUe < 0 . Hence, when MUe < 0 any solution of 
dU

dv
= 0 is unique and constitutes a local utility maximum.
At an observed steady-state cruising speed where the bicyclist is pedaling and unim-

peded by other vehicles and travelers, p > 0 and v∗2 > −𝜇1

𝜇3

 , and MRSet can be computed 

from substitutions into Eq. (4):

If v∗ is a moderate speed in region II of the control term, then 
MUc

dc

dv
≪

(
MUt

dt

dv
+MUe

de

dv

)
 and Eq. (6) can be approximated by

The effect of the control term is to moderate v∗ : a higher v∗ at low speeds (region I) 
and a lower v∗ at high speeds (region III). In the low-speed region I where MUc

dc

dv
> 0 , 

Eq.  (7) would underestimate the true MRSet ; in the high-speed region III where 
MUc

dc

dv
< 0 , Eq. (7) would overestimate the true MRSet.

For region II of the control term, the equilibrium speed must be such that e > e∗ and 
MUe < 0 because MUt

dt

dv
 and de

dv
 are both positive. An effort level satisfying e ≤ e∗ can 

only be observed at an equilibrium speed in region III where MUc
dc

dv
< 0 (i.e., during 

steep descents) – in which case Eq. (7) would not be valid. In region I or II, e > e∗ nec-
essarily. Nevertheless, this does not preclude e∗ > 0.

(6)MRSet =
1

�1
(
�1 + 3�3v

∗2
)
(

1

0.06v∗2
−

MUc

MUt

dc

dv

)

(7)MRSet =
1

0.06v∗2�1
(
�1 + 3�3v

∗2
)
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If control effects are ignored, the preferred speed with p > 0 can be calculated from 
traveler and roadway attributes ( �1 , �1 , and �3 ) and an estimated MRSet by rearranging 
Eq. (7),

and solving the quadratic equation in v∗2 for the positive root:

Because the moderating influence of control is neglected, Eq.  (8) understates the true 
value of v∗ at low speeds (region I) and overstates it at high speeds (region III). Since 
Eq. (8) is derived for the case p > 0 , it only applies if 𝜇1 > −

√
𝜇3

0.12𝛿1MRSet
 or in terms of 

road grade

Model calibration and estimation of MRS
et

To calibrate the speed choice model and investigate how MRSet (and by implication MUe ) 
might vary with e , we use speed observations at varying road grades from two previous 
studies of conventional bicycles (without power assistance). Parkin and Rotheram (2010) 
report average speeds at varying road grades for 16 bicyclists, along with parameter esti-
mates AF = 0.616 m2, CD = 1.2 , CR = 0.008 , 

(
m + mb

)
= 95 kg, and � = 1.226 kg/m3. A 

second source for v∗ observations is the GPS data used in a study of bicyclist ventilation 
in Portland, Oregon (Bigazzi and Figliozzi 2015). The data set includes 55 h of 5-s aggre-
gated speed, acceleration, and road grade data for three bicyclists. For each participant (A, 
B, and C), we calculate time-mean speed in 1% road grade bins with at least 30 observa-
tions. In an attempt to capture equilibrium cruising speeds, the calculation is restricted to 
speed observations greater than 1 kph (0.28 m/s) with absolute acceleration less than 0.1 
kph/s (0.028 m/s2) and road grade changes of less than 1%. Estimates of AF , CD , CR , m , mb , 
and � for each participant are provided in Bigazzi and Figliozzi (2015). The two data sets 
yield similar parameter values except for CR which is half as large, 0.004, in Bigazzi and 
Figliozzi (2015).

Table 1 lists v∗ at varying road grades for the two data sets. Observed average speeds 
vary among the riders and data sets, as expected, due to differences in mass, bicycle 
resistance parameters, marginal utilities of time and energy expenditure, and potentially 
other factors not included in the model. Both data sets (and casual observation) confirm 
that speeds tend to decline with increasing road grade, which indicates that MUe < 0 at 
observed equilibrium speeds. Energy expenditure at v∗ increases with road grade in both 
data sets.

From American College of Sports Medicine equations for energy expenditure during 
cycling (Glass and Dwyer 2007), we use �0 = 0.035m kcal/min and �1 = 0.058 kcal/min/W, 

3�3v
∗4 + �1v

∗2 −
1

0.06�1MRSet
= 0,

(8)v∗ =

√√√√√ 1

6�3

(√
�2

1
+

200�3

�1MRSet
− �1

)

(9)G >
−1(

m + mb

)
g

√
𝜇3

0.12𝛿1MRSet
− CR.
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which includes a metabolic unit conversion of 5 kcal = 1 LO2 (liters of oxygen) and 95% 
efficiency in the bicycle drivetrain (from pedals to tractive force, which accounts for losses 
in the chain and frame) as used in Parkin and Rotheram (2010).

Figure 1 gives MRSet (Eq. 7) for the speeds in Table 1 at grades of − 2 to + 6% in the 
Parkin data (“P”) and the Portland data (participants “A”, “B”, and “C”). Grades of − 3% 
and lower suggest braking (negative power) in both data sets, with v∗ <

√
−𝜇1

𝜇3

 . MRSet 

measures energy-time trade-offs in min/km per kcal/min, based on the units of t and e . 
Road grade increases and v∗ decreases with higher e toward the right side of Fig. 1. Higher 
values of MRSet suggest increasingly negative MUe , and hence a greater propensity to avoid 
energy expenditure. The minimum possible e while bicycling (at p = 0 ) is 
e = �0 = 0.035m ≈ 2.6 kcal/min.

The MRSet estimates in Fig. 1 differ for the two data sets, ranging from 0.1 to 0.5. Subjects 
differ in their estimated disutility from effort, but except for subject B the estimated MRSet 

Table 1   Observed average speeds 
at varying road grades (m/s)

a Fewer than 30 cruising speed observations (more data were collected 
for participant A)

Road grade (%) Portland A Portland B Portland C Parkin

− 3 6.4 a a 6.7
− 2 6.3 a a 6.5
− 1 5.6 5.0 5.2 6.3
0 5.4 4.7 4.7 6.0
1 5.0 4.5 4.2 5.6
2 4.4 4.0 3.8 5.2
3 4.1 a a 4.8
4 3.6 a a 4.4
5 3.4 a a 4.0
6 3.1 a a 3.6

Fig. 1   Energy-time trade-offs from Portland (A, B, C) and Parkin (P) data sets
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increases with e . Moreover, MRSet appears to remain well above zero at all values of e . How-
ever, as described above, excluding control effects leads to overestimates of the true MRSet 
at high speeds (i.e., low values of e ) and underestimates at low speeds (i.e., high values of e ). 
Thus, the actual MRSet curves may be steeper than those shown in Fig. 1.

Sensitivity of the equilibrium speed

Table 2 shows how the equilibrium speed v∗ given in Eq. (8) varies with changes in the trave-
ler and roadway parameters. With the central parameter values, v∗ is 4.94 m/s, and the grade 
constraint for application of Eq.  (8) is G > −2.3% Eq.  (9). Equilibrium speed is a decreas-
ing function of each parameter listed in Table 2. The parameter variations considered are not 
directly comparable, but it appears that road grade ( G ) and MRSet have the largest proportional 
effects on v∗ , whereas bicycle and rider mass ( m + mb ) and coefficient of rolling resistance 
( CR ) have the smallest effects. This sensitivity analysis is illustrative only since it is limited to 
variations in individual parameter values and relies on the MRSet estimates shown in Fig. 1. A 
systematic analysis based on more extensive field data is clearly called for.

Application to electric bicycles

In this section the speed choice model is applied to electric bicycles for validation and to dem-
onstrate how it can be used to predict active travel speeds. Attention is focused on pedal-assist 
electric bicycles which typically deliver power assistance that is proportional to the rider’s 
own power input. (By contrast, “scooter-style” electric bicycles allow riders to control power 
delivery with a throttle.) Let a denote the power assistance level from the electric motor, 
expressed as a percentage of the rider’s power input, p . Power assist levels can range from 
a = 25% to 250% (NYCeWheels; Prindle 2015).

Given a power assistance level a , the (non-zero) energy expenditure on a pedal-assist elec-
tric bicycle becomes

which leads to de
dv

=
�1

1+a

(
�1 + 3�3v

2
)
 . With a = 0 , this expression reduces to the previous 

formula for a conventional bicycle. Given a value of MRSet , cruising speed v∗ on an electric 
bicycle is

(10)e = �0 + �1
1

1 + a
p = �0 +

�1

1 + a

(
�1v + �3v

3
)
,

Table 2   Sensitivity of 
equilibrium speed to variation in 
parameter values

Parameter Central value Variation Resulting 
range of v∗ 
(m/s)

�
1

0.058 ± 0.005 4.83–5.06
m + m

b
95 ± 10 4.92–4.96

A
F
∗ C

D
0.75 ± 0.1 4.80–5.11

C
R

0.006 ± 0.001 4.91–4.97
G 0% ± 1% 4.64-5.27
MRS

et
0.3 ± 0.1 4.57–5.51
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with grade constraint G >
−1

(m+mb)g

√
(1+a)𝜇3

0.12𝛿1MRSet
− CR.

Figure  2 shows the modeled equilibrium speed (Eq.  11) and corresponding energy 
expenditure (Eq. 10) with increasing a for level riding ( G = 0 ), using the Parkin parameters 
above and MRSet of 0.3 (lines) and 0.1–0.5 (shaded areas). The speed choice model indi-
cates that riders will use some of the benefit of power assistance to decrease their energy 
expenditure, and some of it to decrease their time costs by increasing speed. Note that this 
figure neglects the effects of control (which could suppress large speed increases at high 
power-assist levels), and possible relationships between a and the bicycle resistance param-
eters (which could arise from heavier bicycles with larger wheels, for example).

The narrow shaded area in Fig. 2 indicates that, despite the sensitivity of v∗ to MRSet 
shown in Table 2, the effect of a on v∗ is not very sensitive to the value of MRSet . Figure 3 
gives the modeled relationship between v∗ and a for three values of MRSet using the same 
parameters as Fig.  2. Despite the wide range of v∗ that can result from heterogeneity in 
MRSet , the slopes of the lines in Fig.  3 are similar, which explains the narrow range of 
results in Fig. 2 (presented as factor changes with a fixed MRSet ). The other parameters 
in Table 2 and Eq. (11) have similarly small effects on the relationship between v∗ and a , 
as long as they are independent of a—which might not be true for factors such as bicycle 
mass. Even if electric bicycles with a > 0 are 20 kg heavier, the factor changes in speed 
and energy from conventional bicycles (a = 0) are within about 2% of the values shown in 
Fig. 2.

In a recent study of five bicyclists in Lisbon, Portugal, average travel speeds were 8-26% 
faster on electric bicycles than conventional bicycles (Baptista et  al. 2015). The electric 
battery supplied 33–56% of total energy use for these riders, which translates to a values 
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Fig. 2   Modeled speed and energy expenditure as a function of electric power assistance. The shaded area 
covers a range for MRS

et
 of 0.1–0.5
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of 49 to 127%. At these a values in Fig. 2, speed is 12–25% higher than at a = 0 , which is 
remarkably similar to the speed increases observed in the study. Two other studies observed 
speed increases for electric versus conventional bicycles around 14% (Cherry and Cervero 
2007) and 27% (Langford et al. 2015). In Fig. 2 these speed increases occur at a = 60% and 
a = 140% , both of which are reasonable power assist levels. The model predicts general 
speed adaptation to power assistance well, despite neglecting control effects and modeling 
cruising speed on level ground rather than overall average speed.

In a broader analysis it could be of interest to consider the individuals most likely to 
transition to electric bicycles: presumably travelers with greater disutility of energy 
expenditure, and hence higher MRSet and lower equilibrium speeds, ceteris paribus. If pre-
dominantly high-MRSet travelers transition to electric bicycles, and as a result make higher 
speed choices (Fig. 3), it could lead to a narrower distribution of overall (conventional and 
electric) bicycle speeds. For example, all else equal, a rider with a = 80% power-assist and 
MRSet = 0.5 is expected to have about the same equilibrium speed as a rider on a conven-
tional bicycle, a = 0 , and MRSet = 0.3 . This homogenizing influence could be enhanced 
by control effects that moderate speed increases. Alternatively, the range of speeds might 
increase if less risk-averse travelers (i.e., with less negative values of MUc

dc

dv
 at high speeds) 

are more likely to adopt electric bicycles.

Discussion

The bicycle speed choice model presented in this paper is a tractable first step, but rests 
on a number of simplifying assumptions. First, it relies on a rational, utility maximiza-
tion decision process that might not describe how active travellers make speed choices: a 
concern that arises with most types of rational travel behavior models (Heinen et al. 2010). 
In practice, speed choice may be largely habitual. Speed choice may also be influenced by 
social norms or through speed adaptation to other nearby modes with either higher (autos) 
or lower (pedestrians) speeds. Other bicyclists nearby could influence speed preference or 

Fig. 3   Speed adaptation to power assistance at different values of MRS
et
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choice by impeding movement, decreasing wind resistance, or changing the decision con-
text to include relative speed as a source of utility (in cooperative or competitive groups) 
(Bernardi et al. 2015; Hatfield and Prabhakharan 2016). Bounded rationality arising from 
uncertainty may also be a factor as it is unlikely that bicyclists fully understand the long-
term effects on their utility and well-being of a given level of energy expenditure.

A second major limitation of the model is that control effects are addressed only loosely. 
The fact that bicyclists brake on steep descents demonstrates that control effects cannot be 
ignored, at least in region III. Control effects in region I could similarly become relevant on 
a steep ascent. As explained, neglect of control effects leads to mis-estimation of the mar-
ginal rate of substitution between travel time and energy expenditure ( MRSet ). For a given 
individual, MRSet likely increases more steeply with effort than shown in Fig. 1. Across 
individuals, some of the heterogeneity in MRSet may be due to interpersonal differences 
in control functions. For example, a risk-averse traveler might be more concerned about 
loss of control with increasing speed, leading to overestimation of MRSet relative to other 
travelers. Better understanding of control utility functions would improve speed modeling, 
and help explain speed and risk-taking behavior by connecting speed choice to attitudes 
and behaviors such as helmet use and traffic violations (Bai et al. 2013; Fyhri et al. 2012).

A third limitation of the model is that it considers only steady-state conditions in which 
the bicyclist is cruising at a constant speed. This ignores not only changes in speed induced 
by variations in grade, wind speed, wind direction and so on, but also stop events due 
to intersections or traffic congestion. As stated in the introduction, route choice models 
have been estimated with a composite disutility for major road intersections and crossings 
(Broach et al. 2012; Sener et al. 2009), combining the effects of time and energy (and pos-
sibly crash risk) factors. The model in this paper can be extended to include deceleration/
acceleration events, which would enable decomposition of the sources of disutility for 
bicyclist stops and provide insights into how stop costs are influenced by bicycle technol-
ogy and personal characteristics.

Preferred speed is an important aspect of cycling behavior to understand regardless 
of the proportion of time that cyclists can travel at their preferred speeds. When external 
constraints restrict cyclist speeds, deceleration/acceleration dynamics depend on the tar-
get speed, and preferred speed is a common parameter for microsimulation models (Ma 
and Luo 2016; Twaddle et  al. 2014; Twaddle and Grigoropoulos 2016). Understanding 
speed preferences also enables estimation of disutility from lower speeds when bicyclists 
are impeded by other road users, which could be used to model bicycle route choices 
affected by congestion and to evaluate the benefits of segregated and high-capacity bicycle 
facilities.

Bicyclists care about other factors besides time, energy, and control/safety (Heinen 
et al. 2010). General effects of bicycling on traveler utility that are independent of speed 
are not required to model speed choice. These effects likely include some safety concerns, 
some effects of exercise, and myriad reasons for avoiding auto travel. Unpleasant weather, 
a major concern for bicyclists, could influence speed choice through a greater disutility of 
travel time, which would result in a lower MRSet and higher equilibrium speed (reflecting 
a desire to get off the road and out of inclement weather). At night, both lack of adequate 
street lighting and excessive light from oncoming vehicle headlights (as well as bicycle 
halogen lights) may induce bicyclists to slow down. The same is true of rough pavement 
and slippery conditions. Perspiration is another known impediment to bicycle commuting 
that probably increases disutility from effort, leading to a higher MRSet and lower equilib-
rium speed (to avoid excessive sweat). Both inter-personal and intra-personal variations in 
MRSet should be explored along with covariates (trip purpose and length, weather, etc.) in 
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a broad population of travelers to help illuminate these and other influences on bicycling 
behavior.

To calibrate the model for a broader population of travelers, an important next step is 
to examine the joint distribution of the physical and physiological parameters ( AF , CD , 
CR , m , mb , and �1 ) for real-world urban bicyclists. Correlations are likely to exist among 
these parameters as well as between these parameters and other factors such as age. In 
addition, applying the speed choice model to future bicycle fleets requires a projection of 
these parameters, which might evolve appreciably over time with the proliferation of elec-
tric bicycles, for example. New power meter technologies can be used to generate data for 
validation or empirical estimation of the relationship between power and speed (Eq. 5). In 
addition to these parameter values, model calibration requires a method to determine rep-
resentative free-flow cruising speeds, by extraction from GPS data or possibly some other 
experimental method (Ma and Luo 2016).

Developing active travel speed choice models can lead to more sensitive and behav-
iorally-grounded route choice, mode choice, operations, and microsimulation models 
that account for the influences of bicycle and traveller attributes, road grade, wind, and 
other factors. For example, behavioral speed models could explain how electric bicycles 
influence traffic flow on bicycle facilities (Jin et  al. 2015). This line of research is also 
working toward the development of route and mode choice models that separate time and 
energy effects, and are thus more sensitive to the growth in use of electric bicycles and 
other human/electric hybrid vehicles. Estimation of time/energy trade-offs such as MRSet 
will allow valuation of energy expenditure in full social cost accounting (similar to travel 
time valuation). Variation in MRSet could explain some of the observed heterogeneity in 
route and mode choices. To progress toward these goals, future work should explore meth-
ods for quantifying control utility functions, expand the model to include speed dynamics 
and other factors such as surface roughness, examine normalization effects of bicyclists 
in groups and bicyclists on different types of facilities (i.e., arterials with high-speed auto 
traffic vs. paths with low-speed pedestrian traffic), incorporate technical speed-flow and 
speed-density relationships such as (Jiang et al. 2016) to model speed choice under both 
unconstrained and constrained flow conditions, and develop a similar speed choice model 
for pedestrians.
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