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Zonal characteristics (e.g. built environment, network configuration, socio-demographics, and land use) have
been shown to affect biking attractiveness and safety. However, previously developed bikeability indices do not
account for cyclist-vehicle crash risk. This study aims to develop a comprehensive zone-based index to represent
both biking attractiveness and cyclist crash risk. The developed Bike Composite Index (BCI) consists of two sub-
indices representing bike attractiveness and bike safety, which are estimated using Bike Kilometers Travelled
(BKT) and cyclist-vehicle crash data from 134 traffic analysis zones (TAZ) in the City of Vancouver, Canada. The
Bike Attractiveness Index is calculated from five factors: bike network density, centrality, and weighted slope as
well as land use mix and recreational density. The Bike Safety Index is calculated from bike network coverage,
continuity, and complexity as well as signal density and recreational density. The correlation between the Bike
Attractiveness Index and the Bike Safety Index in Vancouver is low (r = 0.11), supporting the need to account for
both biking attractiveness and safety in the composite index.

1. Introduction

Many cities are promoting active transportation (e.g. walking and
biking) to develop more sustainable and livable communities and im-
prove public health (Banister, 2008; Giles-Corti et al., 2010; Pucher and
Buehler, 2010). However, cyclists are vulnerable road users that can
have elevated injury and fatality risks compared to vehicle drivers and
passengers (Safety of vulnerable road users (DSTI/DOT/RTR/RS7(98)
1/FINAL No. 68074), 1998; World Health Organization, 2009).
Therefore, there is a growing interest in evaluating and communicating
the various factors (e.g. network characteristics, socio-demographics,
and land use) associated with biking activity and safety. Indices are a
common tool to summarize the combined effects of various factors that
influence active travel (Carr et al., 2010; Harkey et al., 1998; Landis
et al., 1997; Larsen et al., 2013; Lin and Wei, 2018; Winters et al.,
2013). However, existing “bikeability” indices do not account for ob-
jective crash risks for cyclists while accounting for bike exposure.

To develop a comprehensive city biking index, two major aspects
should be considered: the attractiveness of cycling and the risk of injury
or fatality for cyclists. The attractiveness of cycling is derived from
several factors including land use, socio-demographics, trip types and
distances, cycling facilities, terrain, weather, and the availability and
attractiveness of other modes of travel. Cyclist risk of injury or fatality
comes from the likelihood of crashes of various types, either with or
without interactions with other road wusers such as motorists,
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pedestrians, or other cyclists. The crash likelihood is also derived from
several factors including traffic volumes, and many of the factors that
influence attractiveness such as cycling facilities.

This study aims to develop a statistically calibrated composite zonal
index (Bike Composite Index) that accounts for both attractiveness to
biking and cyclist-vehicle crash risk. The proposed Bike Composite
Index (BCI) consists of two sub-indices: Bike Attractiveness Index and
Bike Safety Index. The indices are developed using Bike Kilometers
Travelled (BKT) and cyclist-vehicle crash data from 134 traffic analysis
zones (TAZ’s) in the City of Vancouver, Canada.

2. Literature

This section is divided into four parts: factors affecting biking levels,
factors affecting biking safety, tools for biking attractiveness assess-
ment, and tools for cyclist crash risk assessment.

2.1. Factors affecting biking levels

Extensive research describes the importance of bike network con-
nectivity for biking levels (Berrigan et al., 2010; Cervero et al., 2019;
Marshall and Garrick, 2010; Mekuria et al., 2012; Osama et al., 2017;
Schoner and Levinson, 2014; Winters et al., 2016). Berrigan et al.
(2010) analyzed showed that network connectivity has a positive
Pearson correlation with walking and biking levels by investigating
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2001 counties' data from Los Angeles and San Diego. Marshall and
Garrick (2010) used data from 24 Californian cities to investigate the
effect of street connectivity and intersection density on the choice to
drive, walk, bike, or transit. They found that intersection density and
street connectivity were associated with more walking, biking, and
transit use. Network continuities are perceived as important by cyclists
(Handy and Xing, 2011; Osama et al., 2017). Bike lanes interruptions
(discontinuities) may compel a cyclist to cycle in mixed traffic or take a
longer route to the cyclist destination (Schoner and Levinson, 2014).
Various studies investigated the impact of land use patterns on biking
levels in North America. Mixed land use was found correlated with
biking levels in Portland Oregon (Dill and Voros, 2007) and in San
Diego (Jones et al., 2010). Offices, fast-food restaurants, hospitals, to-
gether with multifamily residential settings, may support biking
(Moudon et al., 2005). Additionally, various studies investigated the
impact of network facilities on biking levels. Wilkinson (1994) sug-
gested adding bike lanes, separated paths, bike boulevards, and local
streets to the street network to calm traffic and encourage biking.
Parkin et al. (2008) found that the proportion of the off-street bike
routes had a significant positive association with bike ridership, which
is consistent with the findings of Caulfield et al. (2012). Marshall and
Garrick (2011) showed that arterials and collectors streets were less
friendly and perceived as less safe by cyclists. Tilahun et al. (2007)
showed that the presence of on-street parking parallel to bike lanes
reduced the utility of those bike lanes. Lastly, different studies have
discussed the relationship between demographic variables and biking
levels. Schneider and Stefanich (2015) showed that household density
and population density have a [positive association with bike com-
muting by using census tract data in Wisconsin, USA.

2.2. Factors affecting biking safety

Traffic exposure is usually included in traffic crash analysis to
equalize for differences in intensity of use that make comparisons
meaningful (Hauer, 1995). Osama and Sayed (2016) found that bike
network length is associated with a decrease in cyclist-vehicle crashes
while accounting for bike traffic exposure through bike kilometers
traveled. For street network configuration, previous research in-
vestigated the effect of connectivity, directness, density, length, and
topography. For example, Osama and Sayed (2016) found positive as-
sociations between cyclist crashes and the bike network connectivity
and linearity (the ratio between curved links and its effective straight
link). In contrast, they found negative associations between cyclist
crashes and the bike network continuity (bike lane continuation
without intersecting with the street element) and slope. Regarding land
use, the increase in the residential area, industrial area, commercial
area, and land use mix was positively associated with cyclist crashes,

Table 1

Summary of previous studies that developed zonal bikeability assessment tools.
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while accounting for bike traffic exposure through population density
(Amoh-Gyimah et al., 2016; Narayanamoorthy et al., 2013;
Vandenbulcke et al., 2014). Similarly, Osama and Sayed (2016) used
bike kilometers traveled to account for bike exposure, and they con-
cluded that residential area and commercial area were positively as-
sociated with cyclist crashes, while the recreational area was negatively
associated with cyclist crashes. In terms of demographic variables,
Siddiqui et al. (2012) showed that population, employment, and
median household income were positively associated with cyclist crash
frequency. As for travel demand variables, bike traffic (Miranda-
Moreno et al., 2011; Strauss et al., 2013), as well as vehicle traffic
(Hamann and Peek-Asa, 2013), were found positively associated with
cyclist-vehicle crash frequency. Traffic signal density was found posi-
tively associated with cyclist crashes while accounting for bike traffic
exposure (Chen, 2015; Wei and Lovegrove, 2013). The off-street bike
lanes were found safer than the on-street ones while controlling for bike
traffic exposure (Hamann and Peek-Asa, 2013; Reynolds et al., 2009;
Teschke et al., 2012). Recently, Kamel et al. (2019) investigated the
mediated effects that some zonal characteristics variables have on cy-
clist crashes through their effects on bike exposure (by setting bike
exposure as a mediator). They found that bike network coverage and
recreational density have a negative direct association with cyclist-ve-
hicle crashes, and the positive indirect association leading to a positive
total effect on cyclist-vehicle crashes.

2.3. Tools for biking attractiveness assessment

Mainly there are two units of analysis for developing bike attrac-
tiveness tools: roadway level and zone level. Assessment tools that are
suitable for roadway segments were previously developed (Harkey
et al., 1998; Landis et al., 1997). Landis et al. (1997) and Harkey et al.
(1998) employed linear regression modeling to calibrate index
weightings. Landis et al. (1997) developed the Bike Level of Service
(BLOS) method that is based on cyclists' perceptions from traveling on
roadways, while Harkey et al. (1998) relied on video data review to
obtain the perspectives of cyclists.

More recently, other studies used spatial data to evaluate zonal at-
tractiveness to biking (Bike Score Methodology [WWW Document],
2019; Larsen et al., 2013; Lin and Wei, 2018; Winters et al., 2013).
Table 1 gives a summary of previous studies that developed bike zone
assessment tools. Lin and Wei (2018) employed an analytic network
process to manage the interdependences among criteria and zones and
employed grey numbers (A grey number represents the possible values
in a range rather than the exact value) to measure possible ranges of
criteria performances and handle various performances within a zone.
Lin and Wei (2018) relied on the literature and stakeholder interviews
to determine the criteria weighting. Larsen et al. (2013) relied on an

Study/location Data used for index development  Factors Spatial unit Weighting Methodology
of Analysis
Lin and Wei (2018)/ Taipei, Taiwan ® Evidence from previous Bike network configuration; street network; pedestrian TAZ Analytic Network Process
research facility; public transportation facility; green areas; land
use mix; and cyclist comfort perception
Winters et al. (2013)/ Vancouver, ® Opinion survey Bike network configuration; bike-friendly destinations 10-m grid Equal weight
Canada ® Travel behavior analyses density; and topography
® Focus groups
Larsen et al. (2013)/ Montreal, Canada  ® Cyclists online survey Street network configuration; observed and potential 300-m grid  Equal weight

® Cyclist-vehicle crashes
® Origin-destination survey

biking trips expected on different links; survey
respondents for upgrading bike priorities; and cyclist-

vehicle crashes

Bike Score®/ North America ® Walk Score community votes

® Expert advice from Professors

Bike lane score, hill score, destinations and street
connectivity, and bike commuting mode share

Equal weight

* Each factor has a different spatial unit of analysis that is described in the “Comparison to Bike Score®” Section.
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online survey to develop a tool that helps planners to determine the
optimal location for new bike facilities, while accounting for cyclist-
vehicle crashes, but without accounting for traffic exposure. Winters
et al. (2013) employed an opinion survey and focus group data to de-
velop a tool that identifies areas that are more or less suitable to biking
by employing five assessment factors: bike network density, route se-
paration (as a dummy variable), bike-friendly streets connectivity, bike-
friendly destination density, and topography. More recently, the Bike
Score® was developed to measure whether a location is good for biking
on a scale from 0 to 100 based on four equally weighted components:
bike lane score, hill score, destinations and street connectivity, and bike
commuting mode share (Bike Score Methodology [WWW Document],
2019). The Bike Score® methodology is based on votes from the Walk
Score® community and expert advice from researchers at the University
of British Columbia (Bike Score Methodology [WWW Document],
2019).

2.4. Tools for cyclist crash risk assessment

Most traditional ranking/identification methods of high-crash zones
have relied on historical traffic crash records to obtain an estimate of
safety for diverse traffic entities. These simple methods included the
crash frequency method (Deacon et al., 1974), crash rate method, the
rate-quality control method (Stokes and Mutabazi, 1996), the crash
severity method, and summation of the ranks, the safety index method
(Tamburri and Smith, 1970). Even though these approaches are simple,
they suffer from limitations such as the “regression to the mean” issue
(Hauer, 1997), and the incapability for accounting for cash data dis-
persion. Therefore, several studies adopted a model-based ranking ap-
proach. The Empirical Bayes (EB) approach is considered the state-of-
the-practice for identification and ranking of the crash-prone location
and has been utilized in many recent studies (e.g. Cheng et al. (2018)
and Yang and Loo (2016)). A useful indicator to measure the expected
safety benefits is to employ the EB approach to calculate the Potential
for Safety Improvement (PSI) (Sayed and Rodriguez, 1999).

Alternatively, to account for uncertainty in inferences based on
statistical data analysis, the Full Bayes approach (FB) is usually em-
ployed. Aside from the PSI method of ranking mentioned above,
Schliiter et al. (1997) described three methods of rankings employing
the hierarchical Bayesian model, namely the posterior probability, the
predictive probability, and the Posterior Mean (PM). The PM ranking is
comparing the sites based on the expected crash frequency given the
observed data. Miranda-Moreno and Fu (2007) explored the differences
between EB and FB approaches, where they employed both approaches
with the Posterior Mean (PM) method to rank sites. They showed that
FB is superior in the case of a small dataset, however for a large dataset
(e.g. more than 300 sites), the FB and EB approaches had similar per-
formance.

A few studies have ranked hazardous locations based on cyclist
crashes. For example, van den bossche et al. (2002) employed a Baye-
sian binomial to model cyclist crashes and employed PM to identify and
rank the most hazardous locations. Osama and Sayed (2019) employed
a multivariate full Bayesian spatial mixed crash model (CM) to model
cyclist and pedestrian crashes while accounting for the motorized and
non-motorized traffic exposure measures. They identified and ranked
active transportation crashes hotspots using the Mahalanobis distances,
where they showed that the Mahalanobis distances are more efficient
than the traditional PSI method for site ranking.

3. Method
3.1. Index development
Different disciplines (e.g. social science and economics) have given

indices substantial attention, where various techniques have been de-
veloped to handle different aspects of the index development. A number
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of techniques have been explored, such as aggregation techniques,
multiple regression analysis, principal components and factor analysis,
efficiency frontier, and experts’ opinion (budget allocation).

This section describes the followed approach to developing a zone-
based Bike Composite Index (BCI). BCI consists of a Bike Attractiveness
Index (BAI) to represent the attractiveness of the zone for biking and a
Bike Safety Index (BSI) to represent cyclist crash risk in the zone.

Indices are developed not only to accommodate but also encourage
biking, particularly in North America. In addition, these indices are
broadly-accessible, user-friendly tools to incorporate a variety of im-
portant influencing factors on a single scale. Generally, indices are
developed to 1) summarize multi-dimensional characteristics with a
view to supporting decision-makers; 2) access the progress over time; 3)
facilitate the communication with the general public. However, indices’
users and developers should be careful of sending a misleading message
that could lead to inappropriate policies and potential misuse to sup-
port the desired policy.

Bike Kilometers Travelled (BKT) by zone is used to develop the BAI,
by employing multiple regression analysis as an index development
tool, where the regression coefficients are considered the sub-index
weights (Elvik, 2007; Porter and Stern, 1999). It might be argued that if
the concepts to be measured (e.g. biking attractiveness and cyclist crash
risk) could be represented by a single indicator (e.g. Bike kilometers
traveled, cyclist-vehicle crashes), then there would be no need for de-
veloping BAI and BSI. However, the set of sub-index considered as input
in the regression model could be related to various policy actions. The
model could then quantify the relative effect of each policy action on
the target.

Bike Kilometers Travelled (BKT) by zone partially represents biking
propensity if the zones are constructed to contain similar populations
(as is typical with Traffic Analysis Zones). A BKT prediction model was
estimated using lognormal regression, as the model should not yield a
negative result and the BKT distribution is right-skewed. The model
form is shown in Eq. (1), where b, and b,, are estimated model para-
meters, m is the number of zonal characteristic variables, X,,; is the
zonal characteristic variables, and u; is an error term.

ln(BKTZ) = bg + Zmmemi + u; (1)

In the model development process, zonal characteristic variables
that capture the same indicator are not allowed in the same model. For
example, network connectivity indicators (intersection density, net-
work density, and network coverage), are not included in the same
model. Extensive previous research showed the importance of network
weighted slope and network connectivity on zonal biking attractiveness
(Hood et al., 2011; Marshall and Garrick, 2010; Osama et al., 2017;
Schoner and Levinson, 2014; Winters et al., 2013). As a result, these
two dimensions were forced in the developed models: network
weighted slope and a network connectivity indicator. Various models
were developed using the criteria described above. Out of the devel-
oped models, only models where all the independent variables are
significant at 10 % were included as candidates, while the other tested
models were discarded. Then, from the list of candidate models, the
model with the lowest five-fold cross-validation Root Mean Square
Error (RMSE) was selected to enhance the model transferability.

The Bike Attractiveness Index (BAI) is derived from the selected BKT
model using the parameter estimates as weights, as shown in Eq. (2).

BAI'; = bo+Zm b Xpmi @)

Where, BAI; is the raw Bike Attractiveness Index. It should be noted
that, In Eq. (7), the natural logarithm is applied to the right-hand side of
the equation. As the below mentioned BAI and BSI aggregation process
requires the BAI; distribution to be as close as possible to a normal
distribution.

Similar to the BAI development process, multiple regression analysis
is employed to develop the Biking Safety Index (BSI). Zonal cyclist-
vehicle crash model is used to develop the BSI while controlling for
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traffic exposure to quantify the cyclist crash risk. Let ¥, denote the
number of crashes at site i (i= 1...,n) and assume that crashes at the n
sites are independent and that

Y;|8; ~ Poisson (8;) 3)

where 6; is the Poisson parameter. A crash prediction model was esti-
mated using a generalized linear model with a Negative Binomial error
distribution, consistent with previous safety research (Hauer et al.,
1988; Sawalha and Sayed, 2001). To address over-dispersion for un-
observed heterogeneity, it is assumed that

6 = wexp(u;) (4)
and
In(y) = ¢, + ailn(VKT ) + ¢;In(BKTE) + Zpdpn Xpmi %)

where the term exp(u;) represents a multiplicative random effect as
shown in Eq. (6), ¢y, ¢1, ¢, and d,, are estimated model parameters, VKT
is the vehicle exposure variable (Vehicle Kilometers Travelled in the
zone), BKT is the bike exposure variable, X,,; represents the zonal
characteristic variables.

exp(u;) Ik ~ Gamma (x, x) 6)

Where « is the inverse dispersion parameter. The same model devel-
opment process to select zonal variables was used as the specification
for the BAI described above, while forcing in two dimensions: vehicle
kilometers traveled and bike kilometers traveled, to capture the cyclist
crash risk, as shown in Eq. (5).

The Bike Safety Index (BSI) is derived from the crash prediction
model. Then bike exposure variable (BKT) was removed, as shown in
equation Eq. (7). To develop a safety index that is not biased to zones
with more cyclists. In other words, BKT; should be removed to capture
the cyclist-vehicle crash risk instead of the crash frequency. In Eq. (7)
the crash model is multiplied by -1, to invert the scale making high
numbers represent lower crash risk this will show usefulness in the
scaling process described below.

BSI'; = (¢, + ciIn(VKTE )+Zp, dyn Xomi)*—1) %)

Where, BSI; is the raw Bike Attractiveness Index. It should be noted
that, In Eq. (7), the natural logarithm is applied to the right-hand side of
the equation. The below mentioned BAI and BSI aggregation process
requires BSI; distribution to be as close as possible to a normal dis-
tribution.

Next, the Bike Attractiveness Index (BAI) and the Bike Safety Index
(BSI) are aggregated to develop the Bike Composite Index (BCI). In this
case, the reviewed practice tends to assume that items are weighted
equally, and the obligation of proof should be on differential weighting
(equal weighting is the standard). However, to maximize the statistical
information from both, Principal Component Analysis (PCA) has been
utilized. This is an established method to define the weights for the
composite index (e.g. Internal Market Index (Markt, 2001)).

The Bike Attractiveness Index (BAI) and the Bike Safety Index (BSI)
were aggregated into the Bike Composite Index (BCI) using Principal
Component Analysis (PCA). PCA's objective is to take a number of
variables (BAI and BSI) and find a linear combination of these variables
to produce uncorrelated components. The statistical rationale for the
transformation of BAI and BSI variables towards a normal distribution
prior to PCA is to facilitate a meaningful quantification of variance and
to reduce heteroskadacity. Transformation of variables towards normal
distributions before employing PCA is a common practice (e.g. Wold
et al. (1987); Baxter (1995)).

In order to avoid one variable (BAI or BSI) having an unjustified
influence on the principal components, it is common to standardize the
variables (BAI and BSI) to have means of zero and unit variances at the
start of the analysis. Therefore, the BAI and BSI were standardized using
Eq. (8). The resulted first component loadings (W; and W) from the PCA
were used as the Bike Composite Index weighting values, as shown in
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Eq. (9).
Z”' _ Wi—CL)

T oo (€))
BCI'; = W, * BAIL + W5 *BSI,’ 9)

Where w; is observations, w is the mean, o is the standard deviation, z ;
is the standardized values. In addition, BCI ; is the raw Bike Composite
Index, BAI is the standardized values of the raw Bike Attractiveness
Index (BAI ;), and BSIL-” is the standardized values of the raw Bike Safety
Index (BSI ).

Finally, BAL, BSI;, and BCI ; are scaled from 0 to 100 using Eq. (10),
for a better presentation.

= Log-_Zi=min@)
i = 7 - 7
max(z ;) — min(z ;) (10)

Where z; are the index raw values, and z; are the indices scaled from 0
to 100 values. Note that the intercept in Eq. (2&7) may be discarded, as
the indices are scaled.

3.2. Data sources

The BAI and BSI models are based on data from 134 Traffic Analysis
Zones (TAZ) in the city of Vancouver, Canada. The TAZ data were from
the following sources:

1 The Insurance Corporation of British Columbia (ICBC), a public
automobile insurance company, provided crash data for a five-year
period (2009-2013) with location information. Only cyclist-vehicle
crashes are included in the analysis. All three reported severity le-
vels (fatality, injury, and property damage only) were included.
Cyclist-vehicle crashes are aggregated at the different TAZ according
to the reported location. Crashes reported occurring on TAZ
boundaries were distributed to adjacent TAZ as fractions based on
BKT proportions between zones (rounded to whole numbers)
(Osama and Sayed, 2016).

2 TransLink, the transportation planning agency for metropolitan
Vancouver, provided geocoded files of the bike network, street
network, and TAZ boundaries in 2013. TransLink provided Annual
Average Daily Traffic (AADT) for the city of Vancouver network for
the year 2011. In addition, TransLink provided population, em-
ployment, and household data for each TAZ.

3 Acuere Analytics provided the Vancouver Biking Data Model
(VCDM), which gives estimates of the annual average daily bike
traffic (AADB) in 2011 on the entire City of Vancouver bike net-
work. The VCDM is based on bike counts from 2005 through 2011,
including more than 810,000 hourly volumes over 7 years (El
Esawey et al., 2015). The VCDM calculated AADB for 1645 links out
of the 2328 single-direction bike links.

4 The open data catalog of the City of Vancouver (Vancouver, 2013)
provided transportation system data (transit stops and traffic sig-
nals), terrain data (as a 1-m Digital Elevation Model), and zoning
data for the City of Vancouver.

It should be noted that some cyclist-vehicle crashes are not reported,
and the crash data excluded cyclist-cyclist and cyclist-pedestrian cra-
shes. Furthermore, the AADB was computed on links of the bike net-
work, while excluding local streets and other street network facilities.
Lastly, zoning is not the same as land use; however, in this study, zoning
date is used as an available proxy for actual land use.

3.3. Analysis variables
Definitions of the variables that are used in the analysis and their

summary statistics are presented in Table 2. The variables are divided
into three main categories: crashes, traffic exposure, and zonal
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Table 2

Data summary statistics.
Variable Mean SD* Min* Max*
Crashes
Cyclist-vehicle crashes over five years 12.71 13.48 0.00 78.00
Traffic Exposure
VKT (Vehicle Kilometers Traveled) in thousands of Kilometers 4.29 3.33 0.19 22.29
BKT (Bike Kilometers Travelled) in thousands of Kilometers 1.05 2.11 0.00 21.46
Zonal Characteristics
Bike Network
Centrality Indicators
Betweenness Centrality 0.01 0.01 0.00 0.07
Degree Centrality 0.05 0.03 0.01 0.20
Complexity Indicators
Complexity 1.39 1.41 0.00 6.00
Pi Index 190.42 107.60 0.00 791.31
Connectivity Indicators
Bike Network Density 5.38 3.78 0.00 21.91
Bike Network Coverage 0.34 0.19 0.00 1.01
Intersection Density 74.28 33.8 6.08 235.95
Directness Indicators
Bike Network Average Link Length 0.13 0.05 0.00 0.57
Bike Network Linearity 0.68 0.27 0.00 1.00
Miscellaneous Indicators
Total Length of Bike Network Links (km) 3.37 2.53 0.00 17.41
Bike Links with On-street Parking Proportion (Length of Bike Links with On-street Parking/Bike Network Length) 0.31 0.26 0.00 1.00
Off-Street Bike Links Proportion (Length of Off-Street Bike Links/Bike Network Length) 0.01%1072 0.08%1073 0.00 0.091072
Topography
Bike Network Slope 2.53 0.9 0.64 6.66
Street Network
Signal Density (Number of Signals/Zone Area in km?) 14.27 18.5 0.00 110.55
Bus Stops Density (Number of bus Stops/Zone Area in km?) 24.29 23.62 0.00 162.25
Arterial Streets Proportion (of all street links in the TAZ, by length) 0.22 0.22 0.00 1.00
Collector Streets Proportion (of all street links in the TAZ, by length) 0.13 0.10 0.00 0.55
Local Streets Proportion (of all street links in the TAZ, by length) 0.64 0.21 0.00 0.88
Land Use
Recreational Density (Recreational Areas/Zone Area) 0.10 0.13 0.00 0.91
Residential Density (Residential Areas/Zone Area) 0.34 0.2 0.00 0.67
Industrial Density (Residential Areas/Zone Area) 0.03 0.08 0.00 0.61
Institutional Density (Residential Areas/Zone Area) 0.03 0.05 0.00 0.43
Commercial Density (Commercial Areas/Zone Area) 0.05 0.11 0.00 0.58
Land Use Mix 0.45 0.13 0.05 0.74
Demographics
Employment Density (Employment/Zone Area in km?) 12236.3 26399.1 84.5 170910.1
Household Density (Households/Zone Area in km?) 4214.73 4328.55 0.00 21418.85
Population Density (Population/Zone Area in km?) 8391.82 6995.86 0.00 33658.91

* Standard Deviation (SD), Minimum value (Min), and Maximum value (Max).

characteristics. Cyclist-vehicle crashes are aggregated at the TAZ level
according to their geospatial information. Two exposure measures are
incorporated: Bike Kilometers Travelled (BKT) and Vehicle Kilometers
Travelled (VKT). BKT is obtained by employing the Vancouver Cycling
Data Model (VCDM). VCDM provided the cyclists’ trips on the city of
Vancouver bike network links (El Esawey et al., 2015). To obtain each
bike link BKT, trip counts at each segment is multiplied by the corre-
sponding bike link length, then aggregated for each TAZ. Finally, zonal
characteristic variables were further divided into bike network, street
network, land use, and demographics.

3.3.1. Bike network

Bike network variables are divided into five indicators: centrality,
complexity, connectivity, directness, topography, and miscellaneous
indicators. To calculate network indicators, the bike network is char-
acterized as a set of links and nodes. The links represent the bike net-
work infrastructure, while the nodes represent the intersections be-
tween network links (street and bike network links). ArcGIS software
was employed to divide the bike network into TAZ’s according to their
location. Links that go through multiple zones were split on the zone
boundary.

3.3.1.1. Centrality. A network with high centrality indicates low inter-
connectivity and accessibility. Centrality measurement includes degree

and betweenness centralities (Porta et al., 2006; Jiang, 2009; Zhang
et al.,, 2011). Degree centrality measures to what extent a node is
connected directly to other nodes (Freeman, 1978). Degree centrality is
calculated using Eq. (11), where a; = 1 only if node i and node j are
connected by a link or more, and is equal to zero otherwise, and n is the
number of nodes in a network.

l n
P =—= ajj
(n—1) ]Z_‘i ' an

The Betweenness centrality is great if the node is navigated by many
of the shortest paths linking each two-node (Freeman, 1978). Be-
tweenness centrality is calculated using Eq. (12), where g, represents
the number of node pairs j and k that contain point i on the shortest
path connecting them and g, represents the number of node pairs j and
k.

1 = By .
Pz — Fli#jEk
(n - 1)(n—2)zj: Zk: 8k

a2

Eq. (13) is used to aggregate degree and betweenness centralities to
the zone, where C¥ is the centrality of zone i and Ciif is the largest

possible value of C/* for the zone.
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3.3.1.2. Complexity. Rodrigue et al. (2013) introduced two network
metrics to quantify network complexity: Pi index and complexity. The
pi index is the ratio of network diameter to network length. Network
diameter is the length of the shortest path between the most distanced
nodes of a zone network and network length is the total length of links
at each zone. Complexity is the number of independent cycles,
calculated using Eq. (14), where e is the number of links in a
network, n is the number of nodes in a network, and P is the number
of sub-graphs. Sub-graph is a subset of a graph that is isolated from the
other subsets (there are no links between each subset).

Complexity =e — n + P 14

3.3.1.3. Connectivity. Three measures of connectivity are used: network
density, network coverage, and intersection density. Network density is the
ratio of the total length of bike links in a TAZ to the TAZ area (Berrigan
et al., 2010; Zhang et al., 2012; Schoner and Levinson, 2014; Osama and
Sayed, 2016; Saha et al, 2018). The degree of network coverage is
calculated as the ratio of the number of bike links to the number of street
network links in the TAZ (Osama and Sayed, 2016; Yigitcanlar and Dur,
2010). Intersection density is the ratio of the number of intersections to the
area of the TAZ, including all intersections among bike network links as
well as between bike network links and street network links (Cervero and
Kockelman, 1997; Osama and Sayed, 2016; Reilly and Landis, 2003; Zhang
et al., 2012).

3.3.1.4. Directness. Two measures are used to assess network
directness: linearity and average link length. To measure linearity a
hypothetical length (modified bike network length) is calculated that
represents the total length of all bike network links if all the links were
straight while preserving the node location and topology. Then linearity
is the ratio of the modified bike network length to the actual total
length of the bike network links within each TAZ (Osama and Sayed,
2016). The average link length is calculated as the total length of bike
network links in a TAZ divided by the number of links (Kansky, 1963).

3.3.1.5. Miscellaneous. The total length of the bike network is
calculated by summing up bike network links, regardless of their
types, i.e. off-street, on-street, etc., within each TAZ. Bike Links with
on-street parking proportion was calculated as a ratio of the total bike
links length at each TAZ. The off-street bike facilities proportion to the
bike network was calculated at the TAZ level.

3.3.1.6. Topography. The average weighted slope of the zonal bike
network is calculated as the ratio between the aggregate lengths
weighted slope and the length of the network at each TAZ as shown

Table 3
Bike Kilometers Travelled (BKT) Model.
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in Eq. (15).

Z;’ (h*sy + L*sy+..+1, *s,)

Tu i+ b+l (15)

WSlope =

where [ represent the link length, s represent the link’s slope, n represent the
number of links at each TAZ. The total length of the network is calculated
by summing up all the bike network links at the TAZ level. The average
weighted slope of the network in each TAZ is calculated according to the
following steps. First, the absolute grades along each link are averaged to
compute the average slope of each link, using the contour map of the city of
Vancouver. Afterward, the slope at each link is given a weight relative to its
length. Finally, the average weighted slope of the links (in %) is calculated
for each TAZ as shown in Eq. (15).

3.3.2. Street network

Street network variables included traffic signal density and bus stop
density at each TAZ. Additionally, arterial, collector, and local street
length proportions to the street network were calculated at each TAZ.

3.3.3. Land use

In this study, the City of Vancouver zoning data is used to produce
the land use data. It should be noted, however, that the City of
Vancouver zoning data, which represents the city permission for a
certain area, is not the exact same as land use, which represents the
actual type of activity running in each area. Five categories of land use
densities were calculated: residential, recreational, industrial, institu-
tional, and commercial. Other land use categories were discarded
namely; agriculture, cemetery, and undeveloped. Additionally, dif-
ferent types of residential areas such as high rise apartments and low
rise apartments were treated the same and aggregated under residential
areas. The land use mix was calculated using Eq. (16), where §; is the

land use category proportions for each TAZ (Frank et al., 2006).
6:*In(6;
Land Use Mix; (LUM;) = — Z 9In(&)
In(5) (16)

3.3.4. Demographics

Demographic variables included employment, household, and po-
pulation densities at each TAZ. These variables were provided at each
TAZ by Translink.
4. Results

This section presents the developed indices. The reported indices in
the following section are the scaled indices unless otherwise mentioned.

4.1. Bike Attractiveness Index (BAI)

Table 3 shows the estimated Bike Kilometers Travelled (BKT)

BKT Model BKT Model Standardized Variables
Estimate SD* P-value Confidence Interval Estimate SD* Confidence Interval
2.50 % 97.50 % 2.50 % 97.50 %

Intercept -1.131 0.468 0.017 —2.057 —0.205 0.000 0.076 -0.15 0.150
Land Use Mix 2.410 0.689 < 0.001 1.047 3.773 0.272 0.078 0.118 0.427
Recreation Density 1.268* 0.678 0.064 —-0.073 2.608 0.146* 0.078 —0.008 0.300
Bike Network Density 0.063 0.024 0.011 0.015 0.111 0.202 0.078 0.046 0.357
Degree Centrality —10.693 2.817 < 0.001 —16.267 -5.119 -0.293 0.077 —0.446 —0.140
Bike Network Slope —-0.229 0.102 0.027 -0.431 -0.027 -0.174 0.078 -0.328 —-0.020

* Significantly different from zero at 10 %; all other variables were significantly different from zero at 5 %.

§ Standard Deviation (SD).
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model, which includes five variables (five-fold cross-validation RMSE of
1.07). Standardized values are reported to evaluate the magnitude of
each variable’s influence on BKT. All estimates are significant at 10 %
or lower.

Based on the standardized model estimates in Table 3, land use mix
and network centrality have the highest influence on BKT, while re-
creational density and bike network slope have the lowest influence.
The raw Bike Attractiveness Index (BAI) model derived from the BKT
regression is given in Eq. (17).

BAI' = —1.131 + 2.410*Land use Mix + 1.268*Recreational Density
+ 0.063*Bike Network Density — 10.693*Degree Centrality

— 0.229*Bike Network Slope 17)

Fig. 1 illustrates the Bike Attractive Index (BAI) by TAZ as well as its
elements: land use mix, network density, bike network average
weighted slope, and degree centrality. The TAZ colors in Fig. 1 use
green for values that correspond to higher attractiveness and red for
values that correspond to lower attractiveness. The color breaks are the
indicators five quintiles. The BAI heat map shows the TAZ number on
each TAZ. Fig. 1 shows how land use mix, network density, bike net-
work average weighted slope, and degree centrality contributes to the
BAL Fig. 1 shows that there is a spatial correlation between Zones’ BAIL
Also, it is noted that the BAI is low in some of the downtown zones
(zones from 1 to 34), where it is expected to be high as many biking
trips may be conducted in the downtown.

moo-41 B 19
42-50 2
51-58
59 - 67 ; g
68 - 100

Bike Attractiveness Index
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4.2. Bike Safety Index (BSI)

Table 4 gives the developed crash prediction model, which includes
seven variables (AIC = 841.68, five-fold cross-validation RMSE of
9.10).

Bike and vehicle exposure are positively associated with cyclist-
vehicle crashes as expected and similar to many previous studies
(Miranda-Moreno et al., 2011; Strauss et al., 2013; Hamann and Peek-
Asa, 2013; Kaplan and Prato, 2015). Based on the standardized model
estimates, signal density has the highest influence on cyclist-vehicle
crashes while the network coverage has the lowest influence. The raw
Bike Safety Index (BSI) derived from the crash prediction model is given
in Eq. (18).

BSI = —2.829 — 0.187#In(VKT) — 0.016*Signal Density
+ 1.409*Recreational Density — 0.113*Complexity
+ 3.000%Average Link Length + 0.729*Bike Network Coverage
(18)

Fig. 2 illustrates the Bike safety Index (BSI) by TAZ as well as its
elements: signal density, recreational density, complexity, average link
length, vehicle kilometers traveled, and network coverage. Similar to
Fig. 1, the TAZ colors in Fig. 2 use green for values that correspond to
higher safety for cyclists and red for values that correspond to lower
safety for cyclists. The color breaks are the indicators five quintiles. The
BSI heat map shows the TAZ number on each TAZ. Fig. 2 shows how
signal density, recreational density, network complexity, average link
length, vehicle kilometers traveled, and network coverage contribute to
the BSI. The downtown suffers from low BSI due to its high signal
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Fig. 1. Bike Attractiveness Index and its components.
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Table 4
Cyclist-Vehicle Crash Model.
Crash Model Crash Model Standardized Variables
Estimate SD P-value Confidence Interval Estimate SD Confidence Interval
2.50 % 97.50 % 2.50 % 97.50 %
Intercept 2.829 0.276 < 0.001 2.252 3.411 2.216 0.056 2.107 2.326
VKT 0.187 0.086 0.03 0.012 0.363 0.161 0.074 0.010 0.312
BKT 0.614 0.057 < 0.001 0.501 0.730 0.727 0.068 0.593 0.864
Signal Density 0.016 0.004 < 0.001 0.009 0.023 0.292 0.065 0.159 0.431
Recreational Density —1.409 0.557 0.011 —2.534 —-0.28 —0.192 0.076 —0.345 —0.038
Complexity 0.113 0.041 0.006 0.029 0.198 0.159 0.058 0.041 0.279
Average Link Length —3.001 1.319 0.023 —5.673 —0.362 —0.155 0.068 —0.293 -0.019
Bike Network Coverage —0.729* 0.397 0.067 —1.500 0.047 —0.136* 0.074 —0.28 0.009

*Significantly different from zero at 10 %, all other variables were significantly different from zero at 5 %.
§Standard Deviation (SD).
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Fig. 2. Bike Safety Index and its components.

Table 5

A sample of the highest and lowest Bike Safety Index (BSI).
TAZ Bike Safety Index (Ranking) VKT Signal Density Recreational Density Complexity Average Link Length Bike Network Coverage

Safest Zones
1 100 (1) 13.64 0.00 0.92 4 0.33 0.61
47 94.7 (2) 0.44 0.00 0.36 0 0.13 0.82
3 85.1(3) 0.19 0.00 0.27 0 0.09 0.55
133 83.9(4) 1.41 0.92 0.53 0 0.17 0.19
Least Safe Zones

19 15.3 (132) 0.97 75.37 0.02 2 0.13 0.58
4 14.9 (132) 3.29 54.60 0.00 1 0.13 0.31
16 4.7 (133) 1.35 110.55 0.00 1 0.16 0.79
30 0(134) 2.65 78.50 0.00 3 0.09 0.66

Zones 1, 47, 3, and 133 are highly ranked on the BSI mainly because of their high recreational area density, and low signal density. On the other hand, Zones 30, 16,
14, and 19 were ranked the least safe zones for cyclists in the City of Vancouver. This is mainly due to their high signal density and almost zero recreational density.
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density and low recreational densities. Fig. 2 shows a spatial auto- which highlights the need for a composite index including attractive-
correlation in the BSI and its 9four safest zones and the four least safe ness and safety. Fig. 3 illustrates the relationship between the BAI and
zones according to the Bike Safety Index (BSI) are shown in Table 5, BSI, along with BCI and TAZ area. The dispersion (and low Pearson
along with the BSI constitutes. correlation between BAI and BSI) supports the importance of including

both safety and attractiveness dimensions in the composite index.
The Principle component analysis loading for the BAI and BSI are
4.3. Bike Composite Index (BCD 0.73 and 0.68, respectively. The first component explained 56 % of the

variability in BAI and BSI, which is reasonable given the low Pearson
The Pearson correlation between BAI and BSI is low (r = 0.11),
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Fig. 3. Bike Attractiveness Index Vs. Bike Safety Index, with BCI and TAZ area as the point size and color.
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correlation between BAI and BSI (r = 0.11). Since the loadings are al-
most equal, the Bike Composite Index (BCI) is aggregated in equal
weighting, as given in Eq. (19).

BCI, = 0.5*BAI'; + 0.5*BSI ; 19)

Fig. 4 illustrates the Bike Composite Index (BCI) values by TAZ. The
color breaks are the Bike Composite Index five quintiles. Fig. 4 shows
the TAZ number on each TAZ. Since the BCI is in equal weighting
format, and Vancouver’s downtown suffers a low biking attractiveness
(BAI) and cyclist-vehicle crash risk (BSI), the BCI is low in most of the
downtown zones. It should be noted that the results do not differ sig-
nificantly from the 0.73 and 0.68 weightings, compared to equal
weighting format.

5. Discussion
5.1. Bike Attractiveness Index (BAI)

The bike attractiveness model estimates show that the land use mix
is positively associated with BKT. Similarly, Dill and Voros (2007)
found that residents living in mixed land use environments have a
higher probability to commute by bike. Recreational density is posi-
tively associated with BKT. This result is reasonable, as Daley and Rissel
(2011) showed that recreational density encourages road users to
conduct more biking trips. The average weighted slope is negatively
associated with BKT, this is intuitive and consistent with previous stu-
dies (Hood et al., 2011; Osama et al., 2017; Winters et al., 2016), as
steeper slopes work as a deterrent for cyclists. Network density is po-
sitively associated with BKT, in line with previous studies in which
network connectivity and density were positively associated with
biking levels (Berrigan et al., 2010; Marshall and Garrick, 2010; Osama
et al., 2017; Schoner and Levinson, 2014). Degree centrality is nega-
tively associated with BKT. This is consistent with Marshall and Garrick
(2010) who found that gridded street networks (low centrality net-
works) were associated with higher walking and biking.

It is noted that the BAI is low in some of the downtown zones (zones
from 1 to 34), where it is expected to be high as many biking trips may
be conducted in the downtown. This is because the BAI objective is to
capture attractiveness to biking, not the probability of biking, without
considering the density of activities origin and destinations. Fig. 1
shows a spatial autocorrelation in the BAI and its components, therefore
BKT model was redeveloped after accounting for the spatial auto-
correlation, using the Conditional Autoregressive (CAR) technique. The
newly developed CAR model estimates’ were all significant at 10 % or
lower, and have similar estimates, compared to the reported model in
Table 3. As a result, to enhance the BAI transferability, and to develop a
parsimonious model the spatial model is not employed to develop the
BAIL

5.2. Bike Safety Index (BSI)

Table 4 shows that signal density is positively associated with cy-
clist-vehicle crashes which is also consistent with previous studies
(Strauss et al., 2013; Wei and Lovegrove, 2013). Higher traffic signal
density implies the existence of wider intersections that increase the
crash risk for cyclists. Higher recreational density is found associated
with a decrease in cyclist-vehicle crashes. This is plausible because
these areas typically provide off-street bike lanes for cyclists and
therefore it reduces the potential conflict between cyclists and motor-
ists. Bike network complexity has a positive association with cyclist-
vehicle crashes. The positive association can be attributed to that a
complex network configuration creates more potential conflict points
between motorists and cyclists. The average link length has a negative
association with cyclist-vehicle crashes. The results imply that longer
links without discontinuities (fewer intersections) are safer for cyclists
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which is consistent with Osama and Sayed (2016). Bike network cov-
erage has a negative association with cyclist-vehicle crashes; this is
intuitive as bike lanes are safer for cyclists than street facilities without
bike lanes.

The downtown suffers from low BSI due to its high signal density
and low recreational densities, as shown in Fig. 2. Fig. 2 shows a spatial
autocorrelation in the BSI and its constituents, therefore the cyclist-
vehicle crash model is redeveloped after accounting for the spatial
autocorrelation, using Conditional Autoregressive (CAR) technique.
The newly developed CAR spatial model estimates’ were significant at
10 % or lower excluding the bike network coverage and have similar
estimates compared to the reported model in Table 4. As a result, to
enhance the BSI transferability, and to develop a parsimonious model
the spatial model is not employed to develop the BSIL.

5.3. Bike Composite Index (BCI)

The fact that the annual average daily bike traffic (AADB) includes
only the bike network links should increase the correlation between the
BAI and BSI. This is because bike traffic volume might be under-
estimated in zones with high local street proportions by the BKT and
subsequently the BAI Furthermore, this would result in an under-
estimation of the cyclist-vehicle crash risk (BSI). As the AADB limita-
tions cause underestimation to both BAI and BSI, this limitation may
not weaken the correlation between the BAI and BSI.

5.4. Comparison to the Bike Score®

The Bike Score® is selected to be compared to the study’s developed
indices as it is published for the City of Vancouver. The Bike Score® was
developed based on expert advice from researchers at the University of
British Columbia as well as votes from the Walk Score community (Bike
Score Methodology [WWW Document], 2019).

Fig. 5 shows the aggregated TAZ Bike Score® values and the base
Bike Score® map for the City of Vancouver. The Bike Score® was de-
veloped to measures whether a location is suitable for biking and is
calculated from equal weightings of bike lane score, hill score, desti-
nations and street connectivity, and bike commuting mode share (Bike
Score Methodology [WWW Document], 2019). Bike lane score includes
all on-street and off-street bike lanes/paths extracted from Open-
StreetMap, where a decay function is used to each segment (no value is
given to segments further than 1,000 m from the studied location). Hill
score employs the National Elevation Data set to search for the steepest
grade within a 200-meter radius of the studied location, where a grade
of 10 %-2 % is given a score of 0 - 100. Destinations and street con-
nectivity measure the network distances to a set of amenities then
calculates connectivity measures (e.g. intersection density). Bike com-
muting mode share from the Census data was added, by creating a 1 km
moving window over the census tract level data and normalize bicycle
mode share.

Thirty Bike Score® values per zone for the City of Vancouver were
retrieved from www.walkscore.com manually (by entering each loca-
tion address). Then Bike Score® is aggregated for each TAZ using the
maximum score, the minimum score, and the mean of five evenly dis-
persed points’ scores in the TAZ. The average standard deviation within
TAZ for the City of Vancouver is 6.95. As presented in Fig. 5, high
spatial autocorrelation in the scores is evident, due to the use of a 1 km
decay function over bike lane score, 200 m buffer over hill Score, and
1 km moving window over the Bike commuting mode share.

As the Bike Score® is similar to the BAI in definition, therefore it is
compared mainly to the BAL There is a 0.19 Pearson correlation be-
tween BAI and the zonal Bike Score®. Additionally, Cohen’s kappa is a
-0.0001, which shows poor interrater reliability. As the two scores (BAI,
Bike Score®) are poorly correlated and have poor interrater reliability,
the difference in rankings between the two scores is used to compare
the two scores. Furthermore, Bike Score® is weakly correlated with the
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Fig. 5. (a) aggregated Bike Score® by TAZ and (b) base Bike Score®.

Table 6

Zones with the largest differences between Bike Attractiveness Index and Bike Score® rankings.

TAZ Bike Score® (Ranking) Bike Attractiveness Index (Ranking) Land Use Mix Recreational Density = Bike Network density  Degree Centrality =~ Bike Network Slope
Greatest positive differences zones

35 72.6 (127) 80.4 (9) 0.63 0.29 3.65 0.025 2.08

71 86.2 (106) 77.8 (12) 0.57 0.56 0.55 0.022 2.55

92 85 (112) 70.9 (19) 0.59 0.16 5.21 0.022 2.95
Lowest negative differences zones

95 99.8 (3) 45.3 (99) 0.26 0.00 3.36 0.031 1.68

107 97.8 (22) 35.4 (117) 0.32 0.02 4.00 0.068 2.44

123  97.2 (28) 32.1 (121) 0.26 0.00 2.94 0.054 2.54

Bike Safety Index (r=-0.31) and Bike Composite Index (r= —0.07).
Table 6 presents the three zones with the greatest positive differences in
rankings between the BAI and Bike Score® and the three zones with the
lowest negative differences in rankings between the BAI and Bike
Score®, and their BAI constitutes values.

BAI gives high rankings to zones that have recreational areas,
whereas Bike Score® does not. This is due to two reasons: first, the Bike
score® does not include recreational areas in its calculation directly,
while the BAI accounts for zones’ recreational density. Second, the BAI
accounts for the bike links slope instead of the 200 m buffer used in the
hill score component of the Bike Score. Therefore, the Bike Score® gives
low ranking to zones that have recreational areas, as recreational areas
specifically parks, such as Stanley Park (zone 1), usually have steeper
slopes than other land use categories.

Moreover, the Bike Score® extract bike lane data from
OpenStreetMap (OSM). The process of crowdsourcing geographic data
accuracy might be questionable as the OSM data is not administered by
a public agency. Whereas, the current study employed a bike network
provided by the City of Vancouver. The different sources of bike net-
work data may add discrepancies to the developed scores.

Bike Score® accounted for destinations that might attract cyclists. In
contrast, the BAI valued two zoning characteristics, namely recreational
facilities presence and land use diversity. Previous studies have found
mixed land use to be correlated with biking levels (Dill and Voros,
2007; Jones et al., 2010).

5.5. Study limitations and areas of future research

There are several limitations of this study and areas for future re-
search. This study assumes that the zonal BKT represents attractiveness
for biking. Also, this study considered only cyclist-vehicle crashes due
to data limitations. Investigating other types of crashes such as cyclist-
cyclist or cyclist-pedestrian crashes would be beneficial. Excluding cy-
clist-cyclist and/or cyclist-pedestrian crashes may overestimate the Bike

11

Safety Index for zones with high conflict points between pedestrian and
cyclists (e.g. recreational areas). Neglecting single-cyclist crashes (falls)
is a limitation for crash prediction, as they can cause a significant
portion of injuries (Schepers et al., 2015). However, because the BSI is
normalized, it is only sensitive to this limitation if the single-cyclist,
cyclist-cyclist, or cyclist-pedestrian crashes are spatially clustered. This
also could lead to an overestimate of BSI in recreational areas, if they
are poorly lit and/or heavily vegetated.

For future research, the elevation data could be updated using high-
resolution LIDAR (El Masri and Bigazzi, 2019) or crowd-sourced data
(McKenzie and Janowicz, 2017). The transferability of the developed
indices should be tested in other cities. The data in this study are cross-
sectional tracking biking levels over time and cyclist crashes could
capture the causal relationships among zonal characteristics, biking
levels, and cyclist safety. As traffic analysis zones change over time,
future research should investigate other units of analysis (e.g. 10 m grid
cells). Furthermore, the study methodology could be applied to develop
statistically calibrated indices that employ data from open street maps,
which might not be as accurate as the models developed in this study
(with locally collected data). However, the model would be more easily
applied to different cities.

6. Conclusion

Previous bikeability zonal indices did not account for the zonal
cyclist-vehicle crash risk. This study developed a Bike Composite Index
(BCI) that consists of two sub-indices representing bike attractiveness
and bike safety. The developed Bike Attractiveness Index (BAI) consists
of bike network weighted slope, bike network centrality, bike network
density, land use mix, and recreational density. The Bike Safety Index
(BSI) consists of signal density, recreational density, and vehicle kilo-
meters traveled as well as bike network coverage, average link length,
and complexity. The Pearson correlation between the BAI and BSI is
low, which highlights the need for a composite index including
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attractiveness and safety. One possible use of the developed indices is in
decision-making for investments in cycling infrastructure that prioritize
areas with high potential demand (i.e., the density of activities) but low
biking infrastructure attractiveness (BAI) or safety (BSI).
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