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Abstract

With an increasing focus on bicycling as a mode of urban transportation, there is a pressing need for improved tools for
bicycle travel analysis and modeling. This paper introduces “biking schedules” to represent archetypal urban cycling dynamics,
analogous to driving schedules used in vehicle emissions analysis. Three different methods of constructing biking schedules
with both speed and road grade attributes are developed from the driving schedule literature. The methods are applied and
compared using a demonstration data set of 55 h of |1-Hz on-road GPS data from three cyclists. Biking schedules are evalu-
ated based on their ability to represent the speed dynamics, power output, and breathing rates of a calibration data set and
then validated for different riders. The impact of using coarser 3, 5, and 10 s GPS logging intervals on the accuracy of the
schedules is also evaluated. Results indicate that the best biking schedule construction method depends on the volume and
resolution of the calibration data set. Overall, the biking schedules successfully represent most of the assessed characteristics
of cycling dynamics in the calibration data set (speed, acceleration, grade, power, and breathing) within 5%. Future work will
examine the precision of biking schedules constructed from larger data sets in more diverse cycling conditions and explore
additional refinements to the construction methods. This research is considered a first step toward adopting biking schedules

in bicycle travel analysis and modeling, and potential applications are discussed.

Cycling can be a low-cost, healthy, and fun form of
transportation with diverse personal and social benefits.
Promoting cycling is an increasingly common part of
environmental initiatives in the transportation sector to
decrease pollution emissions (/). As a result of these and
other initiatives, bicycle facilities are increasing in many
North American cities, accompanied by an increase in
cycling for travel. These changes intensify a need for bet-
ter understanding of real-world cycling behavior and for
improved tools for bicycle travel analysis and modeling.
Bicycle speed dynamics are important for both physi-
cal and behavioral aspects of bicycle travel analysis. The
human power requirements of cycling vary greatly with
speed, acceleration, and road grade (2). Human power
and energy expenditure, in turn, are linked to physical
activity levels, breathing rates and pollution inhalation,
and many facets of travel behavior such as speed, route,
and mode choices (3—6). Unfortunately, detailed microsi-
mulation and operational models of on-road urban
bicycle dynamics are still in their infancy (7-9).
Knowledge of typical urban bicycling dynamics would
be useful for a number of applications, including estimat-
ing energy expenditure and related impacts from aggre-
gate data such as average trip speed, identifying different
bicycle travel regimes such as cautious versus risky

riding, and simulating cycling dynamics for vehicle devel-
opment and testing such as design of electric-assist
bicycle motors. Driving schedules were developed to
address some similar issues for motor vehicles (/0—13).
Driving schedules, also referred to as driving cycles, are
speed profiles designed to represent typical driving pat-
terns, used in fuel and emissions modeling and in vehicle
simulation and testing (/4).

A main application of driving schedules is to enable
estimation of realistic vehicle fuel consumption and emis-
sions (which depend on driving dynamics) from aggre-
gate travel model outputs such as average speed (1J).
Lab dynamometer testing of real-world vehicles operat-
ing on driving schedules captures the fuel and emissions
effects of typical driving dynamics associated with a given
average speed. Thus, the driving schedules can essentially
be used to disaggregate travel model output. Similarly,
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bicycle travel analysis could benefit from the ability to
estimate realistic cycling dynamics and related impacts
from aggregate travel data such as average trip speed.

Like driving schedules, biking schedules can be
expected to vary with travelers, topography, traffic, facil-
ity type, and more. Road grade significantly influences
the speed and energy of cyclists (4, 16, 17), as well as
motor vehicle emissions (18, 19). However, driving sche-
dules are typically created without synchronous grade
profiles (20, 21). Due to the strong influence of road
grade on cycling speeds, the interdependence of speed
and road grade should be included in an accurate repre-
sentation of bicycle dynamics.

The objective of this paper is to introduce the concept
of biking schedules along with methods for their con-
struction. Methodologies of constructing biking sche-
dules that integrate speed and grade dynamics are
developed by building on the established driving sched-
ule literature. The methods are evaluated using an on-
road bicycling data set. Because biking schedules will
most likely be generated from GPS data, the issue of
required data resolution is also explored, facilitating
application of the method to larger naturalistic data sets
in future work.

Proposed Biking Schedule Construction
Methods

Schedule construction methodologies can be classified into
microtrip based, segment based, pattern based, and sto-
chastic modal approaches (22). This study uses the micro-
trip based approach to develop biking schedules. Observed
travel data are divided into small snippets, called micro-
trips, which form the elementary components of the biking
schedules. A schedule is then constructed by appending
microtrips together until a desired length is reached.
Candidate schedules are evaluated for their similarity to
the original travel data, based on a set of predetermined
aggregate assessment parameters. Departing from driving
schedule methods, the microtrips and schedules in this
research include synchronous speed and grade data.

In past research on driving schedules, microtrips have
been selected randomly (21, 23, 24), with sophisticated sta-
tistical methods such as Markov chain transition matrices
(12), or with hybrid methods (25). In this paper, three
methods of microtrip selection are presented and com-
pared. The following subsections present detailed steps for
the proposed biking schedule construction methods.

Microtrip Extraction

Approaches to defining microtrips vary across the litera-
ture. One common approach is to define microtrips

between two consecutive stops (/1, 26), but this method
poorly represents travel data with long uninterrupted
segments (25). Other approaches involve temporal or
spatial segmentations of predetermined sizes. These
methods have the advantage of producing microtrips
of a consistent desired length regardless of speed
dynamics, but with the drawback of requiring a speed
continuity criterion to produce realistically smooth
speed profiles.

Microtrips in this study are delineated at fixed spatial
intervals of 250 m—an approach which was demon-
strated in recent research to yield the most accurate driv-
ing schedules (27). It is acknowledged that results from
driving schedule studies are limitedly transferable to bik-
ing schedules due to differences in speed and acceleration
characteristics. Investigation of alternative microtrip def-
initions for constructing biking schedules is left for future
work.

Assessment Criteria

The role of the assessment criteria is to ensure that the
developed schedules represent the important character-
istics of the calibration data set. Thus, assessment cri-
teria should be selected that are relevant to the
purposes of the schedule. Target parameter values for
the assessment criteria are calculated from the calibra-
tion data set, and then schedules are constructed to
reproduce those parameter values as closely as possible.
Table 1 lists the 12 assessment criteria proposed for
developing biking schedules. These parameters were
adopted from the driving schedule literature to repre-
sent speed and acceleration dynamics, with new para-
meters added for road grade.

The performance value (PV) is a single aggregate indi-
cator of the set of assessment criteria, used to evaluate
the biking schedules. The PV for each parameter in
Table 1 is the absolute percent difference between the
value calculated from the calibration data and the value
calculated from the biking schedule data, with the excep-
tion of SAGPD for which the PV is the root mean square
error (RMSE) between the target and schedule time frac-
tions in each cell of the distribution matrix. A lower PV
means that the schedule is closer to the target parameters
and more representative of the calibration data. The total
schedule PV is then the weighted average of PVs for indi-
vidual parameters, PV,. Weights are distributed equally
among four sets of parameters that represent speed,
acceleration, grade, and SAGPD:

PV = 025(PVATS + PVARS + PVPTI + PVpTc)/4
+ 025(PVAAA + PVpra + PVpp + PVpr)/4
+ O-ZS(PVAAG + PVprpg + PVPTN(;)/3 + O.ZS(PVSAGPD).
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Table I. Assessment Criteria for Biking Schedules

ID Parameter' Abbreviation Units
| Average trip speed ATS km/h
2 Average running speed (v>0) ARS km/h
3 Percentage time idling (v = 0) PTI %

4 Percentage time cruising (v>1, —0.1<a<0.1) PTC %

5 Average absolute acceleration AAA km/h/s
6 Percentage time accelerating (a>>0) PTA %

7 Percentage time decelerating (a<0) PTD %

8 Average positive work per mass-distance? (a>0) APW m/s?

9 Average absolute grade AAG %

10 Percentage time positive grade (G > 0.5) PTPG %

Il Percentage time negative grade (G < —0.5) PTNG %

12 Speed acceleration grade probability distribution’ SAGPD %

2 VWi 1>y
Note: 'v = speed in km/h; a = acceleration in km/h/s; G = grade in %. 2Expressed as “positive kinetic energy” in (21), calculated as M.

total distance

3Percentage time in each cell of a 3-dimensional speed-acceleration-grade probability distribution matrix with speed intervals of 5 km/h, acceleration

intervals of 0.2 km/h/s (28), and grade intervals of 1%.
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Figure 1. Framework for constructing biking schedules with three different methods.

Biking Schedule Construction

Biking schedules were constructed from the microtrips
using three different methods: random selection, best
incremental, and single cluster. The details of each
method are described in the following subsections.
Figure 1 summarizes the overall framework for con-
structing biking schedules.

For all three methods, the first microtrip in the biking
schedule is randomly selected from a subset of trip-
starting microtrips. Then, additional microtrips are
appended, without repetition, until a schedule duration
of 25 min is reached, consistent with the 10-30 min driv-
ing schedules common in the literature (24). Each subse-
quent microtrip must meet continuity criteria of an
initial speed within 2 km/h and initial grade within 2%
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of the end of the previous microtrip. The methods differ
primarily in how they select the next microtrip from
among those meeting the continuity criteria. For each
method, several candidate biking schedules are con-
structed and the best schedule selected based on lowest
PV.

Random Selection Method. In this method, microtrips are
randomly selected and appended, restricted only by the
continuity criteria, until the target duration (25 min) is
reached. Consistent with previous studies (23), new bik-
ing schedules are repeatedly constructed until 20 candi-
date schedules with PV < 15% have been generated, and
then the preferred schedule selected from those candi-
dates based on lowest PV.

Best Incremental Method. In this method, also adapted
from previous studies (/2, 29), microtrips are first clus-
tered by average speed, average acceleration, and average
grade using a K-means clustering algorithm. The number
of clusters is selected based on the sum of squared errors
(SSE) within clusters, as illustrated in Figure 2. The SSE
decreases with more clusters (i.e. they become more simi-
lar), but with the trade-off of fewer microtrips in each
cluster which can create problems for meeting the conti-
nuity criteria. The optimal number of clusters is likely
context-dependent. In this study, microtrips are grouped
into nine clusters.

After grouping the microtrips into clusters, a transi-
tion matrix is generated to represent the probability of
transitioning between clusters, based on observed
sequences of microtrip clusters in the calibration data. A
stochastic Markov chain process then generates a
sequence of clusters starting from the cluster of the (ran-
domly selected) initial microtrip (30). Then, for each suc-
cessive cluster

20000 30000 40000
! ! 1
°

Sum of squares within clusters

10000
I
o

Number of Clusters

Figure 2. Relationship between number of clusters and SSE
within clusters.

1. Microtrips in the cluster are filtered to identify
candidate microtrips that meet the continuity
criteria;

2. Candidate microtrips are individually appended
to the schedule and a provisional PV calculated
for each;

3. Candidate microtrips are ranked by lowest provi-
sional PV; and

4. The best microtrip is appended to the schedule.

This process is repeated for each successive cluster in the
sequence until the desired schedule length is reached.
Consistent with the random selection method, 20 biking
schedules are generated using this method and the best
schedule selected based on lowest PV.

Single Cluster Method. This method is similar to the best
incremental method, but discards the Markov process by
combining all microtrips into a single cluster. After
selecting the first microtrip randomly, successive micro-
trips are appended based on fulfilling continuity and
lowest provisional PV. Because this is no longer a sto-
chastic process, each starting microtrip generates a single
deterministic schedule. Hence, the number of unique
candidate biking schedules from this method depends on
the number of starting microtrips in the pool. As with
the other methods, the best biking schedule is selected
from among the candidates based on lowest PV.

Evaluation of Methods

An existing on-road cycling GPS data set is used to
demonstrate and evaluate the proposed biking schedule
methods. The data set includes 55 h of 1-Hz speed and
grade data from three cyclists (A, B, and C) in Portland,
Oregon (3). Speed and grade data were processed using a
kernel smoothing algorithm with bandwidths of 3 and
10, respectively (28). Biking schedules are generated for
cyclist A (for which the most data are available) and then
validated in two ways: by testing application to estimates
of cyclist power and breathing rate, and by testing trans-
ferability to the other two riders and lower data resolu-
tions. A total of 1,530 microtrips were extracted from
the cyclist A data; partial microtrips were discarded.
Power output and breathing rate are calculated using
speed and grade from the biking schedules applied to the
equations and fixed parameters (mass, resistance factors,
etc.) given in (3). Transferability to other riders is tested
by generating biking schedules for cyclists B and C based
on their aggregate travel characteristics (assessment para-
meters), but using the microtrips from cyclist A. The
rationale for this approach is to test the possibility of
developing biking schedules for other riders and condi-
tions knowing only aggregate riding characteristics. To
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Figure 3. Biking schedule with the best overall PV, generated from the single cluster method.

Table 2. Overall and Parameter PV of Biking Schedules from
Each Construction Method

Construction method

Random Best Single
selection incremental cluster
Individual- ATS 891 1.40 0.39
parameter  ARS 8.70 0.89 0.08
PV, (%) PTI 1.94 4.99 3.03
PTC 6.04 1.19 0.86
AAA 7.26 0.42 1.57
PTA 0.96 1.21 1.75
PTD 3.21 2.60 2.66
APW 3.04 1.06 2.26
AAG 2.52 1.03 1.05
PTPG 477 .15 0.06
PTNG 21.4 2.78 1.29
SAGPD 0.15 0.13 0.13
Overall PV (%) 493 1.31 1.02

evaluate the effect of GPS data resolution on biking
schedule generation, coarser logging intervals of 3, 5, and
10 s are simulated from the original data set by removing
observations. Acceleration is recalculated as the differ-
ence between consecutive velocity observations, and new
biking schedules generated from the revised microtrips
and assessment parameters.

Evaluation Results

Processing time to generate the biking schedules varied
between methods but was similar among data resolu-
tions. The random selection method took the longest: up
to 3 h to identify 20 candidate schedules with PV <
15%. On average, 70 schedules were created to reach 20

candidate schedules. The processing time for this method
would increase with more microtrips, more desired candi-
date schedules, or a lower PV threshold. In contrast, the
best incremental method required the least processing
time, 1020 min. The processing time for the single clus-
ter method is mainly determined by the number of micro-
trips in the trip-starting pool. This method took the most
time to develop each schedule, but was still more time
efficient than the random selection method because it
required fewer iterations to identify 20 candidate sche-
dules. Failure to find microtrips that met the continuity
criteria was an issue for all methods, but predominantly
a problem for the best incremental method which is
restricted to microtrips within clusters rather than the
entire pool.

Table 2 gives the overall and individual-parameter PV
for the biking schedules generated from each construc-
tion method. Based on the PV, the single cluster method
yielded the best biking schedule (illustrated in Figure 3),
followed closely by the best incremental method. The
random selection method substantially underperformed
the other two methods according to the PV. Inspecting
all generated schedules, there was no clear pattern of cer-
tain parameters having consistently higher PV than
others.

Figure 4 shows the evolution of PV for each method
with biking schedules of increasing length (measured by
the number of microtrips). The last data point in each
series is the target 25-min schedule. In general, PV
improves (decreases) with increasing schedule length, but
not monotonically, and the optimum length depends on
the construction method. Longer schedules can in some
cases degrade the PV due to the constraints of the conti-
nuity criteria when seclecting microtrips to append.
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Table 3 gives the cyclist power output and breathing
50 rate results. Biking schedules generated by all methods
and data resolutions provide power output and breathing
40 et naemerta rate estimates within 10% of the estimates from raw data,
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Substantially shorter schedules generate similar PV for
the best incremental and single cluster methods, but the
random selection method is less efficient at attaining a
low PV. The question of optimal schedule length for bik-
ing schedules requires further investigation.

Figure 5 gives the PV results for all three methods
using data resolutions of 1, 3, 5, and 10 s (the 1-s results
are the same as in Table 2). The ordering among the three
methods is consistent across all four data resolutions,
with single cluster performing best (lowest PV), followed
by best incremental and random selection. The accuracy
of the best incremental method degrades at coarser data
resolutions. The single cluster method has the most con-
sistently good performance, and no clear relationship
with data resolution.

and most are within 5%, suggesting that biking schedules
can plausibly be used for these applications. Somewhat
surprisingly, there is no clear relationship between the
accuracy of the power and breathing estimates and the
PV (shown in Figure 5). If desired, the assessment criteria
could potentially be refined to more specifically reflect
the determinants of power and breathing, or power and
breathing estimates could even be used directly as assess-
ment parameters.

The PV for the biking schedules generated for cyclists
B and C (using cyclist A’s microtrips) were 2% and 6%,
respectively, by the best incremental method, and 1%
and 2%, respectively, by the single cluster method. The
biking schedules are less precise, as expected, when con-
structed from a different cyclist’s GPS data. Still, the bik-
ing schedules are able to represent the cycling dynamics
reasonably well based on the assessment criteria. The sin-
gle cluster method was markedly better for this applica-
tion, likely because it draws from a larger pool of
microtrips and does not rely on a transition matrix that
was generated from a different cyclist’s data.

Calculated power outputs from these single cluster
biking schedules are 11% and 18% higher than from the
raw data for cyclists B and C, respectively, and breathing
rates are 4% and 8% higher. These differences are likely
larger for cyclist C than cyclist B because the dynamics
of cyclist C were more distinct from cyclist A. For exam-
ple, cyclists A, B, and C had mean power outputs of 114,
77, and 57 W, respectively, and mean breathing rates of
21, 20, and 16 L/min. The observation of similar PV but
markedly different power/breathing rate accuracy for
cyclists B and C supports the idea that the assessment
criteria might not well reflect the determinants of cyclist
power, and further refinements should be explored.

Conclusion

This paper presents and compares three methods for con-
structing biking schedules to be used in bicycle travel
analysis. The selection of the best method depends on
several factors. First, data set size is crucial to the pro-
cess. A larger data set is preferable for all methods, but
particularly for the best incremental method which fur-
ther segments the microtrips into clusters. For smaller
data sets the single cluster method would be preferred.
The single cluster method also performed better than
other methods with coarser data resolutions. The ran-
dom selection method is unlikely to be optimal because it
generates relatively low-accuracy schedules.
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Table 3. Cyclist Power Output and Breathing Rate Calculated from Raw Data and Biking Schedules

Power output (W)

Breathing rate (L/min)

Mean Difference from raw data (%) Mean Difference from raw data (%)
| sec data Raw data 114 - 20.8 -
Random selection 114 0.2 20.8 0.2
Best incremental 103 9.8 19.1 8.0
Single cluster 116 1.7 21.1 1.5
3 sec data Raw data 115 - 20.9 -
Random selection 113 1.9 20.6 1.1
Best incremental 112 2.7 20.4 1.7
Single cluster 123 7.2 223 7.0
5 sec data Raw data 115 - 20.9 -
Random selection 120 39 21.7 34
Best incremental 111 3.6 20.4 3.0
Single cluster 118 2.6 21.5 22
10 sec data Raw data 116 - 21.1 -
Random selection 108 74 19.8 6.2
Best incremental 121 4.1 21.9 3.6
Single cluster 116 <0.1 21.1 <0.1

The accuracy of the method depends on the proximity
of the calibration data to the application conditions. In
this study, GPS data from one cyclist was able to gener-
ate reasonable biking schedules based on the aggregate
travel data of two other cyclists in the same 55-hour data
set, albeit with less accuracy. Transferability to more
remote conditions (other cities, seasons, etc.) requires
further investigation. It is expected that larger calibration
data sets encompassing more variability (of riders, ter-
rain, trip purposes, bicycle types, weather conditions,
facility types, etc.) would have greater utility for generat-
ing realistic biking schedules for other contexts. The
transferability of biking schedules, however, depends on
the consistency of cycling dynamics across contexts, for
which we still have little evidence in the literature.

The proposed biking schedules can have a variety of
applications. Biking schedules can be used to estimate
cyclist power, energy, and breathing rate from aggregate
travel data (collected through travel surveys, bikeshare
systems, smartphone applications, etc.), and thus
improve health effects estimates including physical activ-
ity and pollution inhalation. Biking schedules could be
segmented by rider type (age, experience), equipment (e-
bike, cargo bike, road bike), season or weather condi-
tions, or facility type (bike lane, cycle track, multi-use
path) to explore and represent systematic, archetypal dif-
ferences in urban cycling styles and dynamics among
population segments, cities, or facilities. In addition to
modeling cycling outcomes, biking schedules could
potentially be used to represent the typical energy
“costs” of network links and thus applied as inputs to
route choice models.

Biking schedules can also be used by bicycle designers
and manufacturers, particularly of e-bikes and other

human or electric hybrid vehicles, similar to the way
driving schedules are used in motor vehicle modeling and
design. Representative schedules could be implemented
in simulation models and laboratory testing to investi-
gate power consumption and battery life, for example.
Segmented biking schedules could provide more custo-
mized performance information for specific market seg-
ments (sport vs. leisure riders, for example), similar to
the city and highway fuel economy information supplied
to motor vehicle shoppers. Biking schedules could also
be used in research and clinical laboratories to investigate
human performance under more realistic cycling condi-
tions than traditional tiered-workload exercise tests.

The proposed biking schedules are a promising new
tool for bicycle travel analysis, but further work is needed
to develop robust construction methods. Much of the
proposed approach was drawn from driving schedule
methods, which likely have limited transferability to
cycling. The selection of assessment criteria requires fur-
ther investigation, including the most appropriate para-
meters to represent outcomes of interest such as energy
expenditure, and alternative weighting schemes to adjust
the influence of individual assessment parameters on the
overall PV. As this is the first known attempt to develop
biking schedules, the 12 assessment measures used in this
study should be viewed as preliminary. Different micro-
trip definitions and methods of determining schedule
length should also be explored. Delineating microtrips
between consecutive stops would eliminate the need for
continuity criteria, which could improve the performance
of the best incremental method. Lastly, this study used a
limited demonstration data set, and the methods should
be further validated on larger data sets encompassing
more diverse cycling conditions. Transferability should
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also be tested by comparing biking schedules and assess-
ment criteria from cycling data in multiple cities.
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