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ABSTRACT
Electric-assist bicycles (e-bikes) allow cyclists to travel at higher speeds and
climbhills with less effort. Beyond average speeddifferences, little is known
about the unique travel dynamics of e-bikes. The objective of this study
is to examine systematic differences in speed and road grade dynamics
between electric and conventional bicycle trips. Data were collected for
1451 utilitarian bicycle trips in Vancouver, Canada (10% on e-bikes). A sub-
set of conventional bicycle trips werematched to the age, gender, purpose,
and terrain characteristics of the e-bike sample. Biking schedules were con-
structed to represent the archetypal speed and grade dynamics of each set
of trips. Results show that in addition to higher speeds, e-bike trips have
significantly greater speed dynamics, substantially increasing the motive
power and energy required for e-bike travel. Speed and grade dynamics
are important aspects of microscopic cycling behaviour, with applications
including vehicle design, facility design, and health evaluation.
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1. Introduction

Many cities and countries are promoting cycling through polices, programmes and infrastructure,
motivated by goals related to public health, air quality, climate change, traffic congestion, and more
(Pucher and Buehler 2012). The physical effort required to travel by bicycle (and related considerations
such as perspiration) is a barrier to wider adoption of cycling for transportation (Winters et al. 2011).
Electric-assist bicycles (e-bikes) provide ameans to reduce thephysical demandsof cyclingon the rider
(MacArthur and Kobel 2014; Rose 2012). E-bikes allow riders to travel at higher speeds and climb hills
with less effort by providing additional propelling force through a motor drawing electrical energy
from an on-board battery. Existing e-bikes are available to travellers in a range of styles and designs,
ranging from vehicles very similar to conventional bicycles to what are essentially electric scooters.

E-bike use has steadily increased over the past decade, although the overall adoption is still fairly
low in most countries and there is wide disparity in use around the world (Fishman and Cherry 2016).
Some outstanding research questions about e-bike adoption and use include safety impacts (Lang-
ford, Chen, and Cherry 2015; Schepers et al. 2014), net environmental impacts (Cherry, Weinert, and
Xinmiao 2009), impacts on physical activity and consequent health outcomes (Gojanovic et al. 2011;
Langford et al. 2017), and impacts on traffic flow (Jiang et al. 2017; Zhang, Ren, and Yang 2013). Several
studies have reported differences in ridership and trip purposes between electric and conventional
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bicycles. E-bike ridership in North America has been reported as being disproportionately older and
with physical limitations (MacArthur, Dill, and Person 2014; Wolf and Seebauer 2014). E-bikes in the
United States are used proportionately more for utilitarian trips (work and errands) than conventional
bicycles (Ling et al. 2017). Other evidence suggests e-bikes are used for longer trips than conventional
bicycles (Fyhri and Fearnley 2015).

On amicroscale (sub-trip) level, e-bike riders typically travel faster than riders on conventional bicy-
cles. Langford, Chen, and Cherry (2015) reported that in the United States the average on-road speed
of e-bikes was higher than conventional bicycles, whereas conventional bicycles travelled faster on
shared paths. Lin et al. (2008) reported that themean operating speed of e-bikes in Chinawas 22 km/h:
7 km/h faster than conventional bicycles. In a separate study in China, e-bikes were reported to travel
at 13.0 and 11.9 km/h on average in Shanghai and Kunming, respectively, and conventional bicycles
in the same cities to travel at 11.4 and 10.5 km/h on average (Cherry and Cervero 2007). Other recent
studies reported average speed differences of 2–9 km/h between electric and conventional bicycles
(Baptista et al. 2015; Schleinitz et al. 2017), with one study modelling average speed differences as
a function of road grade on individual segments, ranging from no difference on steep descents to
e-bikes 3 km/h faster on steep ascents (Flügel et al. 2017).

Beyond average speed differences, there has been little investigation of the unique microscopic
travel dynamics of e-bikes, and how theymay differ from conventional bicycles. Speed dynamics (pos-
itive and negative acceleration), grade dynamics, and the interaction between the two are likely to be
different between electric and conventional bicycles, assuming riders change their travel behaviour
in response to the availability of motor power. Riders may choose to accelerate faster, to maintain a
higher speed on ascents, or to take a hillier route, for example, if the perceived costs of acceleration,
power, and ascents are lower (Bigazzi and Lindsey 2019). Such differences in travel dynamics would
have impacts on safety, energy expenditure andphysical activity, breathing rates andpollution inhala-
tion, vehicle performance (e.g. battery range), and traffic flow. Hence, an understanding of the unique
speed and grade dynamics of e-bikes is essential for applications such as safety and health evaluation,
traffic flow modelling, e-bike vehicle design, and facility design.

The objective of this study is to examine systematic differences in speed and road grade dynamics
between electric and non-electric (conventional) bicycle trips. It is hypothesized that because of the
power available from the motor, e-bike riders exhibit more dynamic speeds with greater acceleration
activity. ‘Biking schedules’ (archetypal riding patterns) are generated from naturalistic travel data and
compared for electric and conventional bicycles. Biking schedules are a recently-developed method
for characterizing and analyzingmicroscale bicycle travel characteristics (Mohamed and Bigazzi 2018).
Impacts on cycling power and energy are also evaluated.

2. Methods

2.1. Data

2.1.1. Data collection
A large dataset of naturalistic bicycle trips was collected in Vancouver, Canada. Recruitment and
data collection occurred June through October, 2017. Eligible participants were people of age 14 or
over who ‘typically cycle at least once a week in Metro-Vancouver’. Potential participants were first
directed to a website where informed consent was obtained. Then, they completed an approximately
10-minute longquestionnaire to collect cycling experience, travel habit, and socio-demographic infor-
mation. Finally participants were asked to record all of their active travel activity (walking, running,
cycling, etc.) for a 7-day period, beginning on a date of their choosing, which was instructed to be
a ‘typical week when [they] are not travelling out of town’. Only the cycling trips were used in this
analysis.

The smartphone application ‘Ride with GPS’ was recommended to participants for recording their
trips. This application was selected after a review of options because it was available on both Android
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and iOS platforms, provided 1Hz logging of travel data (GPS and heart rate) and enabled direct shar-
ing of recorded data with the research team through a ‘friends’ feature (reducing respondent burden).
Participants were instructed to configure the application to record at 1-second intervals, and were
asked to label each trip within the application with travel mode (walk, run, bike, e-bike, other) and
purpose (work, school, errand, leisure, exercise, other). Participants could also record and share their
trips using any device or application they preferred by sending the researchers their recorded data,
and were offered a smartphone to use during the week if they did not own or chose not to use a
personal smartphone. Participants received daily reminders by email during their selected data col-
lection week, and were instructed to identify any ‘missed trips’ which were not recorded that day.
All participants were entered into a draw for 20 gift cards of CA$25 each. Participants who also pro-
vided heart rate data (not included in this analysis) were further incentivized with custom cycling hats
or socks.

Approval was obtained from the University of British Columbia Research Ethics Board before
recruitment began. Recruitment was carried out via print flyers at bicycle shops, invitation cards dis-
tributed directly to cyclists at bicycle facilities in the region, social media posts, and emails to cycling
groups and organizations within the region and to participants in a previous cycling study. E-bike
groups and e-bike shops were targeted in an attempt to over-sample this small sub-population of
cyclists.

2.1.2. Data processing
GPS data recorded by the smartphone applicationwere obtained in ‘tcx’ format. Each observationwas
comprised of a single GPS reading at 1-second intervals with time stamp, longitude, latitude, altitude,
and heart rate (if recorded) information. Observations with duplicate time stamps within the same
file were corrected or removed at the beginning of the data cleaning process. Several participants
recorded more than one trip in the same file by keeping the application running. Distinct trips within
the same file were separated by stops longer than five minutes at a single location; these stops were
identified by computing periods in which the cumulative speed-based distance was more than three
times the actual net moved distance, based on past research (Cich et al. 2016; Fu et al. 2016). After
cleaning, only bicycle trips with an average speed higher than 5 km/h and a total duration longer than
1min were retained.

The GPS-based altitude data were determined to be unreliable due to issues such as multipath
effects, atmospheric layers, and obstruction (Menard et al. 2011). Road gradeswere derived by extract-
ing elevation data from a Digital Elevation Model (DEM), as is common practice (Casello and Usyukov
2014; Strauss andMiranda-Moreno 2017). Elevation data for each observationwere extracted from the
CanadianDigital SurfaceModel, with a horizontal resolution of approximately 20m (Natural Resources
Canada 2015). Road grade was calculated as the difference in elevation divided by the travelled dis-
tance between each pair of consecutive observations. Road grade values were capped at ±10% to
eliminate erroneously steep grade estimates due to cycling on elevated structures (which are not
in the DEM) or cycling parallel to steep terrain within the resolution of the DEM or the precision of
the GPS.

Raw speed was calculated as the ratio of the moved distance to the time interval between each
pair of non-missing consecutiveobservations.Missing speedswere then linearly interpolatedbetween
non-missing speeds up to five seconds apart. Longer gaps were left as missing data. Speed and grade
were then smoothed using kernel smoothing with a bandwidth of 10 observations. Various band-
widths and other smoothing algorithms (such as moving average, spline smoothing, local polynomial
regression, and Savitzky–Golay) were also examined, and the kernel approach was selected because
it conserved zero-speed observations and provided realistic speed and grade differentials. The best
speed and grade processing algorithms to apply to smartphone-based GPS data for cycling activ-
ity is an area requiring further research. Acceleration was calculated for each pair of non-missing
consecutive speed observations as the difference in smoothed speeds.
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2.2. Biking schedule construction

Biking schedules are high-resolution speed-grade profiles that represent archetypal cycling patterns.
The recently-introduced concept and techniques of biking schedules (Mohamed and Bigazzi 2018) are
derived fromdriving schedules (also known as driving cycles), whichwere developed and used to rep-
resent typical driving behaviour for motor vehicle energy and emissionsmeasurement andmodelling
(Tong and Hung 2010). The main differences are that biking schedules include road grade (because
of the relationships between cycling speed and road grade) and use a different set of cycling-relevant
assessment parameters.

The biking schedule construction methodology can be summarized as follows; for further details
see Mohamed and Bigazzi (2018). First, a set of ‘target’ assessment parameters are calculated that
summarize the aggregate characteristics of a naturalistic travel data set with speed, acceleration, and
road grade information. The 12 assessment parameters are given in Table 1. Biking schedules are ulti-
mately evaluated based on the Performance Value (PV): the weighted percent difference between
the assessment parameters of the biking schedule and the target assessment parameters. The per-
formance value for each individual assessment parameter is the absolute percent difference between
the schedule and target parameter values, with the exception of the speed-acceleration-grade prob-
ability distribution (SAGPD) for which it is the root mean square error (RMSE) between the schedule
and target percentage time in each cell of the array. The overall PV is the weighted average of individ-
ual parameter performance values, with weights distributed equally among four sets of parameters
that represent speed (1/16th each on ATS, AMS, PTI, PTC), acceleration (1/16th each on AAA, PTA, PTD,
APW), grade (1/12th each onAAG, PTPG, PTNG), and all three dimensions (1/4th on SAGPD). A lower PV
means that the schedule is closer to the target parameters and more representative of the observed
trip data.

The ‘best incremental’ method from Mohamed and Bigazzi (2018) is used to create candidate
biking schedules, based on good performance and moderate processing time with a large, high-
resolution GPS dataset. The travel data are first segmented into ‘microtrips’ of 150m. This microtrip
length definition was selected based on an initial exploration of several possible microtrip defini-
tions described in the SupplementaryMaterial. The extractedmicrotrips are then clustered by average
speed, average acceleration, and average grade using a K-means clustering algorithm. The number of
clusters (in this study 15) is determined by adding clusters sequentially until the reduction in the sum
of squared errors within clusters is less than 10%.

An initial microtrip is randomly selected from the subset of trip-startingmicrotrips to initiate a can-
didate biking schedule. A stochastic Markov chain process is then applied to generate a sequence of

Table 1. Assessment parameters.

Parameter Definition Units

ATS Average trip speed km/h
AMS Average moving speed (speed> 0) km/h
PTI Percent time idling (speed= 0) %
PTC Percent time cruising (speed > 1 km/h and

acceleration between−0.1 and 0.1 km/h/sec)
%

AAA Average absolute acceleration km/h/sec
PTA Percent time accelerating (> 0.1 km/h/sec) %
PTD Percent time decelerating (< −0.1 km/h/sec) %
APW Average positive work per distancea m/sec2

AAG Average absolute grade %
PTPG Percent time positive grade (> 0.5%) %
PTNG Percent time negative grade (< −0.5%) %
SAGPD Speed-acceleration-grade probability distributionb %
asum of differences between successive squared speeds with positive acceleration, divided by the
travel distance.

bpercent time in each cell of a three-dimensional speed-acceleration-grade distribution array with
speed intervals of 5 km/h, acceleration intervals of 0.2 km/h/sec, and grade intervals of 1%.
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clusters starting from the cluster of the initial microtrip. For each successive cluster in the chain, the
microtrips in that cluster are filtered based on continuity criteria: beginning within 1 km/h speed and
1%grade of the end of the lastmicrotrip in the schedule. Microtripsmeeting the continuity criteria are
provisionally added to theendof theexisting scheduleoneat a time, a PV is calculated for each, and the
microtrip generating the lowest-PV schedule is appended. This process is repeated for each successive
cluster in the sequence until the desired candidate schedule length is reached (in this study 25min).
The final biking schedule is selected based on lowest PV from a set of 20 such generated candidate
schedules (each starting from a different initial microtrip).

2.3. Matching samples

Because the context of e-bike trips is expected to be different from conventional bicycle trips, Propen-
sity ScoreMatching (PSM)was used to identify a comparable set of conventional bicycle trips tomatch
the smaller set of e-bike trips in the dataset. This approach was used to isolate the effects of the e-
bike specifically, distinct from other systematic cycling differences related to socio-demographics, trip
purpose, and terrain. The PSM method was implemented with the ‘MatchIt’ package in the statistical
software R (Ho et al. 2011).

Several variables were considered for matching criteria including age, gender, home location, level
of education, household income, terrain, and trip purpose. The matching was evaluated using chi-
square tests with a 95% significance level. Only the following four combinations of variables matched
on age, gender, trip purpose, and terrain yieldedmatched samples with no significant difference from
the e-bike trips (i.e. p-values over 0.05):

(1) Matched on A-G: Age+Gender
(2) Matched on A-G-P: Age+Gender+ Purpose
(3) Matched on A-G-T: Age+Gender+ Terrain
(4) Matched on A-G-P-T: Age+Gender+ Purpose+ Terrain

Age and trip purpose were represented as six-level factors, gender as a binary variable, and terrain
as the three assessment parameters related to road grade: average absolute grade (AAG), percentage
time positive grade (PTPG), and percentage time negative grade (PTNG).

Aftermatching, 6 sets of sample tripsweredefined: all e-bike trips, all conventional bicycle trips, and
4 subsets of conventional bicycle trips matched to the e-bike sample. Differences in cycling dynamics
between these sets of trips were first examined by comparing the assessment parameters with t-tests.
Then biking schedules were constructed and compared from the data in each set of trips.

The energy differences of the developed schedules were examined by estimating motive power
from speed (vi in m/s) and road grade (Gi unit-less) at each second of the schedule, using the equation
in Bigazzi and Figliozzi (2015):

Pi = max{0, 0.5m(vi − vi−1)
2 + 9.81mvi(Cr + Gi) + 0.6CdAf v

3
i }

The power calculation used previously-determined representative mass (m in kg) and resistance
parameter (Cr unit-less and CdAf in m2) values for cyclists in the region, given in Table 2 (Tengattini
and Bigazzi 2018). Motive power was aggregated over time to calculate cumulative motive energy.
Motive energy includes power from both the rider and motor (if present).

Table 2. Power equation parameters, from Tengattini and Bigazzi (2018).

Parameter Conventional bicycles Electric bicycles

Total mass of rider, bicycle, and cargo,m (kg) 90 106
Coefficient of rolling resistance, Cr (unit-less) 0.0079 0.0103
Effective frontal area, CdAf (m2) 0.580 0.614
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3. Results

3.1. Overview of sample

A total of 260 people participated in the study by completing the initial questionnaire, of which only
148 participants ultimately provided usable GPS data for their trips. ‘Ride with GPS’ was used by 131
of the final set of participants; the other 17 used other smartphone applications such as ‘Strava’ or
other GPS devices (some did not report the device they used). Of the 2,109 downloaded files, 62 (3%)
were corruptedor devoid of data. Participants also reported 129missed trips. GPS location information
wasmissing from18%of the 1-second interval data (including stops); after processing, 8%of 1-second
speed dataweremissing. Ultimately, GPS datawere collected for 2,314 trips (70%bike, 8% e-bike, 14%
walk, 2% run, and 7% unknown), with a total moved distance of 14,961 km over 875 h. There were 35
e-bike owners in the sample, ofwhich 14 recorded e-bike trips during the data collection. Exercise trips
(4%) and trips with less than 80% complete speed data were excluded, which left 1,308 conventional
and 143 electric bicycle trips for further analysis.

The cyclist sample was 58%male, similar to the 62% observed in a recent cyclist intercept survey in
the region (Tengattini and Bigazzi 2018), and lower than the 71% reported in the region’s 2011 house-
hold travel survey (TransLink 2013). Figure 1 gives the income distribution of the sample compared
with the two other samples of regional cyclists. Figure 2 gives the cumulative age distributions for the
same three samples. Chi-square tests comparing the age and income distributions of the samples at
p < 0.05 are both non-significant compared to the 2016 intercept survey and significant compared to
the 2011 household travel survey.

3.2. Matched samples

Table 3 summarizes the six samples of bicycle trips: e-bike trips, unmatched conventional bicycle trips,
and 4 subsets of conventional bicycle tripsmatched to the e-bike trips by PSM. The e-bike sample trips
were made by older riders than the conventional bicycle trips, with a much larger share (67% versus
39%) over 40 years old andmuch smaller share (6%versus 35%) under 31 years old. Thepercentmale is
comparable for electric and conventional bicycle trips (64% versus 61%). E-bikesweremore frequently
used for work trips, and less frequently for school, errands, or other trips; the share of leisure trips was
similar. The three terrain variables were also similar between the electric and conventional bicycle trip
samples.

Table 4 gives the assessment parameters (mean and standard deviation) for each of the six samples.
The SAGPD parameter is excluded because it does not have an interpretable single value. The table
also indicates the results of two-tailed, two-sample t-tests (at p < 0.05) comparing the matched and

Figure 1. Income distributions of cyclist samples (in Canadian dollars).
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Figure 2. Cumulative age distributions of cyclist samples.

Table 3. Summary of trip samples.

E-bike
trips

Matched
on A-Ga

Matched
on A-G-P

Matched
on A-G-T

Matched
on A-G-P-T

Unmatched
conventional
bicycle trips

Number of trips 143 143 143 143 143 1308

Age in years (% of sample trips)
< 20 0.0 0.0 0.0 0.0 0.0 2.3
21–30 6.3 6.3 6.3 7.7 12.6 32.9
31–40 26.6 26.6 26.6 25.2 26.6 26.0
41–50 52.4 52.4 53.8 47.6 44.8 22.1
51–60 5.6 5.6 5.6 6.3 2.8 9.8
> 60 9.1 9.1 7.7 13.3 13.3 6.9

Percent male 64.3 64.3 70.6 56.6 64.3 60.7

Trip purpose (% of sample trips)
Work 65.0 56.6 65.7 52.4 60.1 46.3
School 0.0 4.2 0.0 2.1 0.0 13.0
Errand 6.3 14.0 9.1 17.5 11.2 15.8
Leisure 11.9 15.4 7.7 18.2 11.2 11.3
Other 16.8 9.8 17.5 9.8 17.5 8.6
Missing 0.0 0.0 0.0 0.0 0.0 4.7

Terrain variables: mean (standard deviation) of trip values
AAG 2.35 (0.85) 2.48 (0.71) 2.54 (0.60) 2.25 (0.79) 2.41 (0.85) 2.40 (0.67)
PTPG 41.7 (10.7) 44.6 (11.7) 45.7 (11.8) 41.5 (13.6) 40.9 (11.8) 44.4 (12.2)
PTNG 38.9 (10.4) 39.3 (12.0) 39.2 (10.9) 38.3 (12.0) 39.3 (11.4) 39.1 (11.4)

aA: Age, G: Gender, P: Trip purpose, T: Terrain.

e-bike sample trips (paired), and comparing all conventional bicycle trips with thematched and e-bike
samples (unpaired).

Compared to all four matched samples, the e-bike trips had significantly higher average speeds
(ATS, AMS), average absolute acceleration (AAA), percent time accelerating and decelerating (PTA,
PTD) and average positive work (APW) at p < 0.05, and significantly lower percent time cruising (PTC).
The terrain parameters were less consistent across matched samples, with no significant differences
from the two samples matched on terrain (as expected), but significantly lower percent time positive
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Table 4. Mean (standard deviation)a of assessment parameters for e-bike, conventional bicycle, and matched sample trips.

Parameterb E-bike trips
Matched
on A-Gc

Matched
on A-G-P

Matched
on A-G-T

Matched
on A-G-P-T

Unmatched conventional
bicycle trips

ATS 21.7 (7.60) C 15.7 (4.53) E,C 16.7 (4.36) E 16.3 (5.23) E 15.9 (4.91) E 16.6 (4.62)
AMS 22.5 (7.33) C 16.4 (4.55) E,C 17.4 (4.34) E 16.9 (5.22) E 16.6 (4.90) E 17.3 (4.54)
PTI 4.28 (4.62) 4.13 (4.27) 3.94 (5.03) 3.96 (5.03) 4.21 (6.04) 3.71 (5.37)
PTC 14.5 (6.89) C 17.4 (7.87) E 17.3 (7.53) E 19.0 (8.30) E 18.1 (7.23) E 17.8 (7.30)
AAA 0.60 (0.20) C 0.47 (0.14) E 0.48 (0.15) E 0.44 (0.13) E,C 0.46 (0.13) E 0.46 (0.14)
PTA 39.2 (4.86) C 37.5 (4.93) E 37.4 (5.24) E 36.8 (5.02) E 37.4 (4.66) E 37.3 (5.04)
PTD 39.3 (4.51) C 37.3 (5.05) E 37.3 (5.19) E 35.9 (5.54) E,C 36.7 (5.60) E 37.4 (5.16)
APW 2.08 (0.69) C 1.72 (0.58) E 1.76 (0.58) E 1.58 (0.48) E,C 1.69 (0.51) E 1.69 (0.57)
AAG 2.35 (0.85) 2.48 (0.71) 2.54 (0.60) E,C 2.25 (0.79) C 2.41 (0.85) 2.40 (0.67)
PTPG 41.7 (10.7) C 44.6 (11.7) E 45.7 (11.8) E 41.5 (13.6) C 40.9 (11.8) C 44.4 (12.2)
PTNG 38.9 (10.4) 39.3 (12.0) 39.2 (10.9) 38.3 (12.0) 39.3 (11.4) 39.1 (11.4)

aE indicates p < 0.05 for two-tailed paired t-tests comparing matched versus e-bike sample trips (N = 143); C indicates p < 0.05
for two-tailedunpaired t-tests comparinge-bike andmatched samples (N = 143) versus all conventional bicycle trips (N = 1308).

bParameter definitions, including units, are in Table 1.
cA: Age, G: Gender, P: Trip purpose, T: Terrain.

grade (PTPG) than the two other samples, and significantly lower average absolute grade (AAG) than
one of the matched samples (matched on age, gender, and purpose). Compared to the full conven-
tional bicycle sample, the e-bike trips were again significantly faster (higher ATS, AMS), with greater
absolute acceleration (AAA), greater positive work (APW), more time accelerating and decelerating
(higher PTA, PTD), less time cruising (lower PTC), and less time on positive grades (lower PTPG). Per-
cent time idling (PTI) and percent time negative grade (PTNG)were not significantly different between
any of the samples.

Thematched samples were also significantly different from the full set of conventional bicycle trips
for some parameters, with significant differences indicating lower speeds, lower absolute accelera-
tion, less time decelerating, lower positive work, less time on positive grades, and both larger and
smaller absolute grades. Other than for terrain, these differences in speed and acceleration character-
istics between the matched and full conventional bicycle samples are in the opposite direction of the
differences between the e-bike sample and the full conventional bicycle sample.

3.3. Biking schedules

Table 5 gives the performance values for the six biking schedules generated from each of set of trips.
The overall PV for all six schedules is under 3%, indicating that the biking schedules closely represent
the speed, acceleration, andgrade characteristics of the sample trips. Theonlyparameter that deviated
from the target value bymore than 10%was percent time idling (PTI) for a single schedule. The PTI had
high variability among trips; note that it is the only parameter with a standard deviation greater than
the mean in Table 4. The six biking schedules are composed of 43–64 microtrips – the most for the
e-bike schedule, because of the higher average speed.

All six biking schedules are provided in a data file in the Supplemental Material. Figure 3 illus-
trates three of the biking schedules for the e-bike trip sample, the subset of conventional bicycle
trips matched on age, gender, trip purpose, and terrain, and all conventional bicycle trips. Both speed
and grade exhibit large variability over the schedules, reflecting the dynamics of cycling on an urban
street network in a moderately hilly city. The e-bike schedule reaches the highest speed (46 km/h), as
expected. Average speeds range from 16 to 23 km/h, again highest for e-bike. The schedules include
only a few full stops over the 25min, consistent with the observed trip data in which around 4% of trip
timewas idling, on average. Road grades in the schedules range+/−9%, fluctuating between positive
and negative grades 34–56 times (on average twice a minute). Average absolute grades are 2.1% to
2.7%; median absolute grades are lower at 1.4% to 2.1%. Speed and grade are negatively correlated in
all six schedules, with Pearson correlation coefficients of −0.09 to −0.31 (p < 0.01).
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Table 5. Performance values (%)a for the biking schedules generated from each set of trips.

Parameterb E-bike trips
Matched
on A-Gc

Matched
on A-G-P

Matched
on A-G-T

Matched
on A-G-P-T

Unmatched
conventional
bicycle trips

ATS 5.98 5.23 5.46 2.93 1.22 1.54
AMS 5.81 5.41 5.43 3.55 1.02 1.65
PTI 7.55 4.29 0.83 18.59 6.21 5.35
PTC 0.02 2.09 2.41 0.35 3.41 0.73
AAA 0.17 7.61 5.17 0.10 0.74 2.09
PTA 1.33 0.07 0.20 2.65 2.12 2.93
PTD 0.67 0.11 1.10 1.64 1.28 3.61
APW 0.76 1.07 5.27 3.31 0.75 1.08
AAG 3.21 0.86 0.07 2.46 0.60 0.55
PTPG 0.37 0.53 0.73 0.22 0.77 0.15
PTNG 0.73 0.50 0.92 0.34 3.93 0.36
SAGPD 0.10 0.09 0.09 0.09 0.08 0.09
Overall PV 1.78 1.80 1.78 2.34 1.51 1.30
aPerformance value calculation is described in Section 2.2.
bParameter definitions, including units, are in Table 1.
cA: Age, G: Gender, P: Trip purpose, T: Terrain.

Figure 3. Biking schedules representing e-bike, matched, and unmatched conventional bicycle trips.

Figure 4 shows the cumulative moved distance and motive energy over the six biking schedules.
The average total distance over 25min for the 5 conventional bicycle schedules is 7.2 km and for the e-
bike schedule is 9.7 km, reflecting the higher average speed of e-bikes. Themotive energy required to
produce the observed travel dynamics of e-bike trips is substantially higher than that of conventional



1476 A. MOHAMED AND A. BIGAZZI

Figure 4. Cumulative distance (left) and motive energy (right) over each biking schedule.

bicycle trips. The average motive power of the e-bike schedule (256 W) is twice as large as that of the
conventional bicycle schedules (107 W to 140 W, highest for the full/non-matched sample).

As an illustration to parse the effects of speed dynamics from average speed and resistance fac-
tors, the average power of the e-bike and four-way matched sample schedules was 256 W and 113
W, respectively (127% higher for e-bikes). Removing dynamic effects by calculating the power for
steady-state riding at the average moving speed and average absolute grade of each sample (from
Table 4) yields power estimates 88% higher for e-bikes. Further removing the effects of different phys-
ical resistance by applying the conventional bicycle weight and resistance parameters to both power
calculations yields steady-state power estimates 57% higher for e-bikes. Thus, of the 127% power dif-
ference, roughly half can be attributed to average speed and grade differences, a quarter to resistance
differences, and a quarter to differences in speed and grade dynamics.

4. Discussion

The sample is considered generally representative of the regional cycling population in terms of socio-
demographics, with some exceptions. Children (under age 14) are excluded from the sample, which
is not a major issue for this study because they are not legally allowed to ride e-bikes in the province.
Still, the dynamics of conventional bicycle trips reported here only apply to adult cyclists. The sample
skews older (see Figure 2), likely because of the targeted recruitment of e-bike riders, who tend to be
older. Finally, the sample could be unique in other ways besides socio-demographics. In particular,
cyclists willing to participate in a moderately burdensome study such as this could be more avid or
keen about cycling than others.

The trips by e-bike in this sampleweremadebyolder riders than the conventional bicycle trips, con-
sistent with past research (Fishman and Cherry 2016). The e-bike trips were also usedmore frequently
for commuting purposes, consistent with a recent study in the United States (Ling et al. 2017). Signifi-
cant differences between the matched and full conventional bicycle samples support the importance
of comparing similar trips when assessing the unique attributes of travel by e-bike. A general compar-
ison of (unmatched) trips on the two types of bicycles underestimates the differences of e-bike travel
characteristics. For example, e-bikes tend to be used by older riders; matching on age leads to lower
speeds for the matched conventional bicycle trips (Table 3), and thus greater differences from e-bike
trips. On the other hand, e-bikes tend to also be usedmore for work trips, which can have the opposite
effect.
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The average speeds (ATS, AMS) for e-bike trips were 6 km/h faster than the matched conventional
bicycle samples (22 versus 17 km/h). Average e-bike speeds around 30% faster than conventional bicy-
cles is toward the upper end of the range reported in previous studies (Baptista et al. 2015; Flügel et al.
2017; Langford, Chen, and Cherry 2015; Schleinitz et al. 2017). Percent time idling (PTI) was not signif-
icantly different, implying similar effects of traffic control devices on stopped time. But e-bikes spent
less time cruising and more time accelerating and decelerating than conventional bicycles. E-bikes
also had significantly greater absolute acceleration, which supports the hypothesis that e-bike speeds
are more dynamic. Greater speed dynamics for e-bikes is potentially reflective of lower acceleration
costs perceived by riders, which may lead to cyclists riding less strategically to avoid accelerations. In
past surveys, assistance in acceleration was cited as a key benefit for e-bike users (MacArthur, Dill, and
Person 2014; Rose 2012).

The terrain characteristics were similar between e-bike and conventional bicycle trips, although e-
bikes spent a slightly smaller percentage of time on positive grades. Less time on positive grades but
similar time on negative grades could reflect similar terrain but grade-dependent speed differences
(i.e. less time ascending similar hills). A larger difference between electric and conventional bicycle
speeds on positive versus negative grades was reported in a recent observational study in Norway
(Flügel et al. 2017). In a previous online survey, 35% of e-bike riders stated they avoid hills less on e-
bikes than conventional bicycles (MacArthur, Dill, and Person 2014), but no such systematic terrain
difference was observed in this study.

The speed andgradedynamics of the samples of electric and conventional bicycle trips in this study
were successfully represented in 25-minute biking schedules, evidenced by good performance val-
ues under 3% for all six generated schedules. The schedules represent not just the speed dynamics
but the interacting speed-grade dynamics of the observed trips, which are important because the
effects of motor assistance on riding behaviour are expected to be grade-dependent (Bigazzi and
Lindsey 2019; Flügel et al. 2017). Higher average speeds are reflected in 2.5 km (35%) longer riding dis-
tance in the e-bike than conventional bicycle schedules. The e-bike schedule also requires twice the
motive energy of the conventional bicycle schedules. All of thematched sample schedules require less
motive energy than the pooled conventional bicycle schedule,magnifying the higher energy demand
of e-bike travel when comparing trips with similar rider demographics and trip purposes. The motive
energy differences are larger than the distance/speed differences because they include the impacts of
greater speed dynamics (Table 4) as well as greater weight and resistance parameters (Tengattini and
Bigazzi 2018).

5. Conclusions

This paper goes beyond average speed differences to quantify and compare the speed and grade
dynamics of urban trips on electric and conventional bicycles. Archetypal cycling dynamics are pre-
sented in the form of biking schedule data for each type of bicycle. The results show that cyclists
change their microscopic travel behaviour in several ways in response to electric motor assistance,
as suggested in a recently-developed behavioural speed choice model (Bigazzi and Lindsey 2019).
Although human energy expenditure may be reduced when riding e-bikes (Langford et al. 2017),
cyclists also increase both their average speed and their speed dynamics to utilize the additional
available motive power. Greater speed dynamics combined with higher average speed and greater
resistance factors substantially increases the total motive power and energy required for typical
operation of these bicycles. The differences in speed dynamics and motive power are important for
understanding and modelling microscopic travel behaviour of cyclists, with applications including
vehicle design, facility and signal design, and safety and health evaluation.

A key application of this research is design and testing of electric bicycles, including development
of realistic range estimates for real-world usage. The electric biking schedule can be used to simulate
or lab-test battery state-of-charge over typical riding conditions. It could also be used in the design of
motor controllers and other vehicle components such as regenerative brakes. Another application is
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investigation of human energy expenditure and breathing rates on different types of bicycles through
physiology testing and modelling, such as in a recent effort to design e-bike systems that can reduce
inhalation of traffic-related air pollution (Sweeney et al. 2018). The joint speed-grade dynamics are
particularly important for these applications because of the grade and history dependence of energy
requirements to cycle at a given speed (Bigazzi and Figliozzi 2015).

Further work could be done to enhance the biking schedule generation method. This is still a rel-
atively new method, derived from motor vehicle studies, and future research should examine other
methods of determining the optimal number of clusters, additional assessment parameters, and alter-
native weighting in the PV calculation. Another limitation in the analysis is the reliance on GPS data
for speeds and DEM data for road grades. Both data sources have errors, andmore research is needed
to determine the best GPS data processing and road grade extraction techniques for cycling trips.
The potential data errors introduce uncertainty into the analysis, but are not expected to substantially
affect the findings because they would likely be similar for electric and conventional bicycle trips.

The scope of study is another limitation, particularly with regard to terrain. The survey was con-
ducted in a single, moderately-hilly region. While the survey sample is believed to be generally
representative of regional cycling, the speed dynamics of these same riders would likely be differ-
ent in another city. Within this part of the North American continent, for example, Vancouver is more
hilly than Portland, Oregon but less hilly than Seattle, Washington. In addition, although a specific
effort was made to recruit e-bike riders, with uptake in North America still low, the sample size was
not large. Future research could combine e-bike data frommultiple cities to develop biking schedules
representing e-bike travel characteristics in a broader range of contexts. With additional data, e-bike
schedules could be parsed by terrain, e-bike style (pedal-assist, throttle-assist, cargo, speed-pedelec,
etc.), and other factors (demographic, climate, road facility, trip purpose). With sufficient monitoring
data, bikeway volumes could also be included to account for traffic impedance (Bernardi, Krizek, and
Rupi 2015; Jin et al. 2015; Xu et al. 2016). Regulatory e-bike schedules could then be developed to
provide consumers with standardized range estimates, similar to the driving schedules used for fuel
economy labelling of motor vehicles.
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