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Accurate modeling of bicycles in microsimulation tools is chal- Received 4 May 2020
lenging due to the limited availability of detailed data, complex-  Accepted 23 December 2020
ity of cyclist decision-making, and heterogeneity in cycling behav- KEYWORDS

ior. This paper proposes an agent-based bicycle simulation method Microsimulation; bicycles;
in which generative adversarial imitation learning (GAIL) is used agent-based model; machine
to infer the uncertain intentions and heterogeneous preferences learning

of cyclists from observational data. The model is tested on video-

derived data of cyclists on a unidirectional path in Vancouver,

Canada. In cross-validation, multivariate distributions of move-

ment variables such as speed, direction, and spacing are similar

between observed and simulated cyclist trajectories. The model

also performs well in comparison to two other cyclist simula-

tion models from the literature. The proposed approach to agent-

based microsimulation is a significant advancement, with continu-

ous, non-linear, and stochastic representation of cyclist states, deci-

sions, and actions. The enhanced consideration of cyclist diversity is

necessary for developing bicycle networks for all ages and abilities

of riders.

Introduction

Bicycle simulation models have a range of practical applications for analyzing bicycle infras-
tructure and operations, cyclist power and energy, and traffic safety (Heinen, Bert, and Kees
2010). However, bicycle simulation models are still underdeveloped due to a lack of under-
standing of how cyclists make microscopic decisions about bicycle control and interactions
with other road users. To overcome this limitation, a promising approach for the microsim-
ulation of bicycle traffic is building intelligent cyclist agents that learn hidden preferences
and intentions from observational data.

The objective of this research is to develop an imitation learning model that can pre-
dict accurate bicycle trajectories for microscopic simulation by learning the heterogeneous
hidden utility of cyclist agents through training on real-world demonstrations of cycling
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behavior. A key novel contribution of this paper is the investigation of continuous, non-
linear, and stochastic policy estimation processes for cyclist agents using observational
data.

Background and literature review

Traffic microsimulation model development to date has focused on motor vehicle traffic.
These existing tools can help guide the development of bicycle microsimulation, though
the operation of bicycles differs from that of motor vehicles in fundamental ways. Bicycle
traffic is more maneuverable, and more affected by operator attributes including physi-
cal capability, gender, age, and fatigue (Twaddle, Schendzielorz, and Fakler 2014). The two
basic models used for motor vehicle microsimulation are car-following and lane change.
These two models describe the decisions of drivers to take different guidance actions (e.g.
accelerate, decelerate, change lane) based on stimuli from the environment and interact-
ing motor vehicles (Aghabayk, Sarvi, and William 2015). The adaptation of these methods
to bicycle traffic must account for differences such as the absence of lanes, which allows for
flexible utilization of lateral road space by cyclists and changing lateral positions to allow
for more unconstrained riding or overtaking. Most car-following models assume a stimuli
response mechanism, where motor vehicle actions are highly determined by leading vehi-
cle actions. We cannot assume these same stimuli-response models apply to bicycle traffic
given the differences in independence of movement. Also, stochasticity in behavior is more
pronounced in bicycle traffic, in the form of inter-cyclist (differences between cyclists due
to different characteristics) and intra-cyclist (variability in behavior of an individual cyclist
when encountering similar situation in different time periods) heterogeneity (Taylor and
Mahmassani 1998).

The most commonly used method for modeling microscopic cyclist behavior is cellular
automata (CA) (Wolfram 1983). CA uses a discrete space formulation wherein cells occupied
by cyclists change according to the movement of cyclists following a set of rules control-
ling their motion and interactions. Jiang, Jia, and Wu (2004) developed a stochastic CA
model that discretizes the environment into cells containing multiple bicycles. Jia et al.
(2007) developed a CA model that differentiates fast-moving and slow-moving cyclists, and
compared deterministic and stochastic rules. Gould and Karner (2009) extended the CA
modeling approach for multiple lanes and multiple types of cyclists. Xue et al. (2017) devel-
oped a CA model in which each cell can represent one bicycle, and each bicycle’s speed
is affected by a leading bicycle’s speed in preceding time steps. Tang et al. (2018) formu-
lated a CA model that can account for group behavior. Although CA has been extensively
used in the bicycle microsimulation literature, it has limitations including the lack of a con-
tinuous state-space representation. Also, CA models only allow a preset number of agent
groups, each with its own set of rules, which limits the ability to model multiple levels of
heterogeneity and environment dynamics (Wolfram 1985). These limitations of CA models
restrict the flexibility required to model bicycle traffic heterogeneity.

Other methods of modeling microscopic cyclist operations are derived from homoge-
neous rules of behavior. Liang, Baohua, and Qi (2012) developed a psychological-physical
force model that assumes cyclists make guidance decisions (acceleration and direction)
based on forces of collision avoidance and friction between interacting cyclists. Zhao and
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Zhang (2017) developed a following model that can be applied to motor vehicles, bicy-
cles, and pedestrians by assuming the same stimuli-response behavioral mechanism, but
with different parameter values. The parameters were estimated from experimental data
of motor vehicles, bicycles and pedestrians moving in a circle. These methods model the
average behavior of cyclists, but cannot represent inter-cyclist and intra-cyclist behavior
heterogeneity.

Agent-Based Modeling (ABM) is a potentially powerful approach for realistic modeling of
human-directed movements and interactions in roadway environments. ABM offers flexibil-
ity in developing models that are robust and scalable, which can capture the complexity of
real-world behavior that emerges from the microscale into the macroscale (Jennings 2000).
Using ABM approach allows models to capture the variability in decision-making rules in
varying situations and between heterogeneous agents. For example, interacting cyclists
could encounter different behavioral schemes depending on their relative values of motion
variables (Mohammed, Bigazzi, & Sayed, 2019). A key task in developing ABM is identifica-
tion of agent goals and strategies. One approach to this task is using a structured analytical
model with parameters that govern agent behavior in different situations, selected using
heuristic techniques (Baster et al. 2013; Hussein and Sayed 2017). This approach to ABM has
been used in various transportation applications, including modeling the effect of ‘Mobility
as a Service' trends (Djavadian and Joseph 2017), solving transit network design problems
(Liu and Zhou 2016), and modeling the interactions between autonomous vehicles using
a multi-agent framework (de Oliveira 2017). The drawback of this approach for bicycle
microsimulation is the use of pre-set rules; agents do not learn from the environment or
other agents, nor do they evolve through the learning process (Abdou, Hamill, and Gilbert
2012).

Another approach to ABM development is designing intelligent adaptive agents that
can learn from experience by imitating expert demonstrations and evolving their goals and
strategies over time (Plekhanova 2003). To apply this approach to bicycle microsimulation,
the navigation and guidance behavior of a cyclist moving along a path can be framed as
a finite-state Markov Decision Process (MDP). In this framework, a cyclist is an agent inter-
acting with the environment (roadway features, other road users, traffic controls, etc.) and
executing a sequential decision process. At each time step, cyclists base their decisions on a
function which is called a policy throughout this paper. Policy is defined as a mapping func-
tion from the agent’s current state to its consequent action. The main component of a policy
is its reward function that represents the attractiveness of potential future states to the
agent, following the formal approach of (forward) reinforcement learning. Solving a rein-
forcement learning problem requires a defined reward function, which is usually defined by
the analyst for ad hoc control tasks. For the problem of modeling cyclist guidance behavior,
a priori definition of a reward function is difficult due to the unknown multivariate relation-
ships among state and action variables that describes the exact trade-offs between different
desiderata, and the unknown structure of the reward function itself. This issue is similar to
the difficulty in specifying a reward function for robot driving tasks described in (Abbeel
and Ng 2004), or in the discrete model developed for inferring a discrete reward function
for cyclists’ on cycling paths (Mohammed, Sayed, and Bigazzi 2019).

Imitation learning can be used to avoid a priori definition of a reward function; imitation
learning is the estimation of an agent policy (without a pre-defined reward function) based
on observed demonstrations of ‘expert’ agents. Behavior cloning aims to directly learn a



348 . H. MOHAMMED ET AL.

policy from expert demonstrations using a supervised learning approach (Bain and Sam-
mut 1995). A major drawback of behavior cloning is the lack of generality in the learned
policy (Ratliff, Silver, and Bagnell 2009). Learning the reward function is another approach,
usually called Inverse Reinforcement Learning (IRL) or Inverse Optimal Control (I0C). The
major advantage of inductive (IRL) over deductive (behavior cloning) learning approaches
is the ability to produce generalizable theories not limited to the training information
(Plekhanova 2003).

Reward function learning has several distinct advantages over supervised learning in
the context of sequential decision making. The reward in reinforcement learning is defined
for all states, allowing an agent to receive a learning signal even from states that are not
observed in the training dataset. In contrast, in supervised learning, an agent only receives
a score for states included in the labeled observations. In addition, reinforcement learning
maximizes the global expected return on a trajectory, rather than the local response to a
specific observation. Agents in reinforcement learning have the ability to plan their trajec-
tories considering all future scenarios and may take unusual short-term actions to avoid
highly impactful later states.

In summary, a major gap in bicycle microsimulation literature is the limited represen-
tation of heterogeneity and uncertainty in cyclist behavior. The current state-of-the-art
bicycle microsimulation models use either cellular automata or homogeneous analytic
approaches, which do not have the ability to represent the full heterogeneity of cyclist pref-
erences, intentions and interactions. This paper proposes a new methodology for modeling
microscopic behavior of cyclists, imitation learning, that allows inference of hidden cyclist
preferences which can then be used to predict stochastic cycling behavior in changing
environments.

Conceptual and modeling frameworks

The decisions taken by any road user (a cyclist in this case) can be classified into strategic,
tactical and operational levels (Michon 1985) - see Figure 1. The strategic level describes
high-level decisions about trip planning, such as mode, route, and departure time choices.
The operational level describes the microscopic control decisions to operate a bicycle, pre-
dominantly pedaling and steering, in addition to finer control aspects such as balance and
roll. The middle level (tactical) describes the short-term decisions required to operate the
bicycle within the roadway, such as adhering to traffic controls, interacting with other road
users, and avoiding obstacles. The three levels of decision-making are connected, mean-
ing that decisions made on the strategic level affect decisions on the tactical level, which
in turn affect operational-level decisions. For example, the choice of a specific route that
has a right turn at some location will require a tactical decision about when to make the
turning maneuver, and consequent steering and pedaling control decisions to execute the
maneuver.

Factors that vary between cyclists, such as those related to physical capability and riding
equipment, lead to inter-cyclist heterogeneity in decisions. Some factors can also vary for
an individual, either over the duration of a single trip or between different trips, creating
intra-cyclist decision heterogeneity. Other sources of heterogeneity in decisions are due to
environmental variability, such as changing traffic conditions or weather.
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Figure 1. Multiple levels of cyclist on-road decision-making.

Focusing on operational-level decisions for microscopic simulation, we assume cyclists
observe attributes of the environment (in particular the movements of other road users)
and then make operational control decisions with the intention of executing a tactical-level
plan. In building our conceptual framework, we need not only consider sources of hetero-
geneity that directly affect the operational level decision-making, but we need to consider
sources of heterogeneity affecting the higher levels of decision making as well (tactical
and strategic). The operational decisions are based on future conditions anticipated by
the cyclist, which may not be fully realized due to uncertain environment dynamics. The
outcomes of cyclists’ operational decisions that are affected by uncertain environment
dynamics could change future decisions on the tactical level (deciding to overtake, keep
following, keep a certain distance to the center line, etc.) or other tactical decisions that
are not explicitly modeled here, such as cyclists waiting an extra block to turn right. Also,
the changes in decisions on the tactical or the strategic levels affect the operational level
of decisions. Although we are not explicitly modeling the effect of strategic level decisions
on the operational level or vice versa, the conceptual framework is needed to scope the
modeled behavior and sources of heterogeneity.

In this paper, an agent-based stochastic modeling methodology is used to represent all
three levels of heterogeneity. Cyclists are represented by agents, whose states are context-
dependent; for example, states of cyclists on bicycle paths have different structures from
states of cyclists on roads with mixed traffic. States of cyclists on continuous cycling paths
in this paper are defined by state features of speed, position in the path, longitudinal and
lateral distances from other cyclists, and speed differences from other cyclists.

The conceptual framework is reflected in the modeling framework formulation in the
choice of the modeling approach itself, which allows for capturing the three levels of het-
erogeneity. In modeling our problem as a stochastic discrete-time continuous state and
action Markov decision process. The continuous state and action spaces allow for more
realistic modeling of the search space of actions taken by a cyclist facing a certain state.
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Also, continuous state and action spaces prevent having gaps in possible action and state
variables combinations. Cyclist agents in the model map between their current state and
their chosen action using a function called the policy function. This policy function uses
an underlying function called the reward function that the agent is trying to maximize. By
searching the space for the best action that causes transition to a new state having the high-
est possible reward given the environment dynamics, the objective of the cyclist agent is
being defined and the policy function is formed. This formulation is aiming to mimic the
operational decision-making process of cyclists in real life by choosing actions from a con-
tinuous search space leading to change in the future state done on fine discrete intervals
(1/30t) of a second.

Two types of agents are defined in the model: unconstrained agents, whose oper-
ational decisions are not affected by the presence or movements of other road users,
and constrained agents, whose decisions are affected by other road users (for example, a
cyclist following another cyclist). The decisions of constrained and unconstrained agents
are modeled differently. Constrained agents make decisions about their control actions
by applying a learned stochastic policy to information about the environment and other
agents. The policy seeks to maximize the discounted rewards of uncertain future states for
the agent. Unconstrained agents apply a learned stochastic policy responding only to the
environment.

Methodology
Data

The data used as demonstration for training and testing of the model are bicycle trajectories
extracted from video data recorded at the Burrard Bridge in Vancouver, Canada (Figure 2).
Video data with a frame frequency of 30 Hz were obtained over three days, 12-14 April
2016 from 7:00 to 19:00 (29 h total). The weather during the three days was partly cloudy
with a stable average temperature of 11°C. The video image included bicycle traffic in a
dedicated unidirectional path (without pedestrians) with a grade of +1% in the direction
of travel.

Spatiotemporal bicycle trajectories composed of the location, speed, acceleration, and
direction of the bicycles at each time step (1 /30t of a second) were extracted from the video
data by means of computer vision techniques (Saunier and Sayed 2006; Ismail, Sayed, and

892016-04-12 5:30:50 PM

Figure 2. Camera position (left) and field of view (right) for the video data.
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Figure 3. lllustrations of feature detection (left) and object grouping (right).

Saunier 2008). The first step for the computer vision software is camera calibration to con-
vert the two-dimensional video coordinates into three-dimensional real-world coordinates
by creating a homography matrix. Due to the significance of the camera calibration step for
the accuracy of extracted trajectories, a comprehensive procedure was followed to achieve
an acceptable quality of the extracted positional variables. Numerous distances, angles, par-
allel lines and perpendicular lines were used for the calibration. A validation of the camera
calibration was done by comparing speeds of a random sample of cyclists to speeds cal-
culated manually by observing the times it took these cyclists to traverse a section of a
certain known length. A mean absolute error of 0.86 m/s between the manually and auto-
matically extracted speeds was observed which was considered sufficiently low to not affect
the results. The accuracy of the used computer vision technique was assessed in a previous
study (Li et al. 2012), in which a comprehensive accuracy testing was conducted and an
R? of 0.93 was observed between automatically and manually measured speeds. The soft-
ware then detects the moving objects by differentiating them from static features using
the Kanade-Lucas-Tomasi feature tracker (Lucas and Kanade 1981; Tomasi and Kanade
1994) (Figure 3). The coordinates of the bicycles in each video frame are used to calculate
speed, acceleration, and direction. Speed and acceleration profiles are smoothed using the
Savitzky-Golay low pass filter (Savitzky and Golay 1964) with a seven time-step (7/30 s) win-
dow size. The total number of observed in-interaction trajectories was 2823, in which 2428
were involved in following interactions (following cyclist remained following leading cyclist
throughout the observation period) and 395 were involved in overtaking interactions (the
originally following cyclist took an overtaking action within the observation period).

Cyclist states are defined by the following variables: x- and y-coordinates in the horizon-
tal plane (m), speed (m/s), and direction angle with respect to the path centerline (degrees).
Constrained cyclists are identified in the extracted trajectories as those that co-exist with
other cyclists in the same video frames and are in a following position. The video image
covered a travel distance of approximately 25 m, so consecutive cyclists with consistently
longer spacing were not identified as constrained. The variables used as reward features for
constrained cyclists in the imitation learning algorithm are: cyclist speed (v), speed differ-
ence from leading cyclist (Av), longitudinal (Diong) and lateral distance (D)4t) in path from
leading cyclist, path deviation from centerline (D), direction angle with respect to path
centerline (®) and direction angle difference from leading cyclist (A ®). lllustrations of some
of these reward features are provided as x — y plots in Figure 4.
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Figure 4. lllustration of some variables used as reward features.

The reward features are the variables that are used as an input to the reward function,
which is the basis of the reward function. The mapping from states to actions in the policy
function happens by selecting the action that gives the highest reward given some state
variables among the continuous search space of possible actions.

Model setup

Control decisions by constrained cyclist agents are modeled as a continuous state-action
discrete-time Markov Decision Process (MDP). A model that uses continuous state and
action variables is crucial to avoid the exponential increase in parameter space with addi-
tional variables or finer discretization. Also, discretization of state and action spaces ignores
an infinite number of overlapping state variables and action variables scenarios, which can
impede accurate representation of highly detailed cycling behavior. However, the decision
was made to use discrete time instead of a continuous time scale because modeling the
problem with continuous time would add an unnecessary layer of complexity. Contrary to
the discretization of state and action variables, using discrete time scale does not increase
the problem dimensionality as the MDP is evaluated at each time step. Also, a high fre-
quency of agent decisions at 1/30t™" of a second can be assumed as a suitable approximation
of a real-world decision-making process.
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An MDP consists of a tuple(S, A, 7, ¥, R), where S is a set of states; A is a set of actions;
T = {Psa} is a set of state transition probabilities; y € [0, 1] is a discount factor for future
rewards; and Ris the reward function for a given state s € S. The cyclistagent MDP has con-
tinuous states (s1,...,St...,st)" and continuous actions (as, ..., ds, ...,ar)" at discrete
time t in a sequence of T time steps.

Each cyclist has four state features at each time step: x coordinate, y coor-
dinate, speed v, and direction angle ®. The total number of state features in
the model at each time step depends on the number of agents. For n cyclists
existing in a certain time step (one of which will be leading or unconstrained
and the others following or constrained), the complete state vector contains n x 4
features: {(xy, 1. vi, @), Xe,, Y7, Ve PR Xty Yo Ve Ph)i o (X0 V8, 0 Ve, Pr, )} Each
cyclist has two action features at each time step: acceleration « and yaw rate ®
(rate of change in direction angle). For n cyclists, the complete action vector is thus
{(a, ©)), (ar,, Of), (ar,, Of,), ..., (ar,_,, O, _,)}. The actions of the constrained cyclists are
determined by a policy derived from imitation learning, described next; the action of the
unconstrained cyclist is determined by a policy derived from a variational autoencoder
(described below in a subsequent subsection).

It was decided to use two separate models to predict the behavior of constrained and
unconstrained cyclists at each time-step. Constrained cyclist behavior tends to be partially
affected by the movement and actions of a leading (unconstrained) cyclist, in addition to
other variables related to the environment and individual cyclist characteristics. In con-
trast, the unconstrained cyclist behavior tends to be more random in nature as cyclists
have a wide range of motion variables choices (which are inherently more restricted for
constrained cyclists). As a suitable approach for modeling unconstrained cyclists, GAIL
was chosen as it learns the hidden stochastic policy function that is a function of rela-
tive motion variables and other environment/personal characteristics. Variational Autoen-
coders was found to be more suitable to modeling unconstrained cyclists as it has the
ability to learn a latent distribution of the range of behavioral ‘styles’ that differ among
cyclists.

Constrained agent behavior

An agent'’s policy is a mapping function between a state s € S and the probability of tak-
ing a certain action a € A. The policy function can be written as 4 (dals), where 6 is a set
of parameters for the policy function. In imitation learning, we have a set of M trajec-
tories or expert demonstrations D = {¢1,...,&m, ..., ¢m} that are assumed to represent
optimal or sub-optimal behavior and are used to estimate the policy and reward func-
tion. The goal of policy inference is to find the set of parameters 6 that maximizes the
likelihood of the observed data (i.e. the cumulative probability the model assigns to the
observed trajectories). The expert demonstrationsD are represented by an array of state
and action pairs for each observed trajectory: ¢ = (s1,ay, ..., sr,ar). Thelikelihood of a cer-
tain trajectory (¢) resulting from a policy function y and initial state (sq) with probability
P(s1) is:

T

Ly (©) = Lay (s1,a1, ..., s7,07) = P(s1)7g (an]s1) | [{PCselse—1, ar—1)7o (arlse))
t=2
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where P(s¢|s;—1,a;—1) is the state transition probability mapping from the state-action
pair at one time step (s;—1,d;—1) to the next state s; (estimated from the observed
trajectories).

Reinforcement learning assumes that observed cyclists are following an expert policy,
7g, and that their actions seek to maximize the individual total return, which is the sum of
expected discounted rewards along the trajectory. The discounted reward of a future state
is represented by yr(s;), where r(s;) is the single reward associated with visiting state s
at time t. The cumulative discounted reward for a trajectory ¢ is then R, = Y, ¥'r(sp).
To infer the expert policy from the observed trajectory data, an optimal policy estima-
tion algorithm would seek to maximize the sum of discounted rewards over the observed
trajectories: 0™ = arg maxpE¢~(, (¢)[R¢ .

The maximum entropy (ME) principle is used to represent uncertainty in the learning
process (Ziebart et al. 2008). In ME the observed trajectories are assumed to represent
near-optimal behavior; the agents are assumed to seek an optimal policy, but sub-optimal
behavior is possible. A similar representation can be used for the process of humans driv-
ing as well (Hamdar, Treiber, and Mahmassani 2008). Relaxing the assumption that the
observed trajectory strictly maximizes R;, we instead assume that the probability of a tra-
jectory increases with R, . Using ME, the probability of occurrence for a specific trajectory is
a function of the exponential of the aggregate reward: P(¢) = (exp(R;)/Z), where Z is the
partition function that represents the aggregate rewards for all possible trajectories. The
partition function Z is intractable to calculate, and so it is approximated using importance
sampling.

Although r(s;) is unknown and unobserved, a surrogate reward 7(s;) can be learned from
the data, without imposing a structure on the reward function, using a generative adver-
sarial imitation learning (GAIL) procedure. GAIL trains a generator Gy to perform expert-like
behavior by rewarding it for ‘deceiving’ a classifier or discriminator Dy, that is trained to
discriminate between the generated and observed state-action pairs. Consider a set of sim-
ulated trajectory data ¢y sampled from Gy and a set of expert trajectories ¢r sampled from
the expert dataset, D.

For a neural network Dy, parameterized by v, the GAIL discriminator loss function is
given by L(Dy) = E¢~pl—1og Dy ($e)] + Egy~c, [log(1 — Dy (¢9))1. The first term of the
discriminator’s loss function is the effect of correctly classifying an expert trajectory, Dy, (¢¢);
the second term is the effect of wrongfully classifying a generated trajectory, Dy, (¢5). The
minimum value of the loss function occurs when the discriminator becomes indifferent
to trajectories sampled from expert data versus from the generator. The GAIL genera-
tor loss function is similar to that of the discriminator, but is minimized when the dis-
criminator is confused in classifying the generated trajectories as expert ones: £L(Gy) =
Egy~ay [—10g Dy (£9)].

The discriminator’s classifier is trained using binary logistic regression, where P (¢)
denotes the probability of occurrence of trajectory ¢ under the expert policy ng, and
P, (¢) denotes the probability of occurrence under the generator policy ms: Dy (¢) =
(P (€)/Prs(C) + Pr,(£)). Substituting the ME definition of the probability of occurrence
for expert trajectories, the discriminator becomes: Dy (¢) = (explR(¢)]1/explR($)] + Z -
P, (£)). The generator’s policy is modeled as a neural network with rectified linear units
(ReLU) that captures non-linearity in the policy function. The policy is trained by back-
propagation using minibatch gradient descent; positive examples are sampled from ¢
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Figure 5. lllustration of the LSTM-variational autoencoder architecture.

and negative examples are sampled from rollouts generated by interactions of 7y with the
simulation environment.

To estimate 7y, a surrogate reward function is formulated as: 7(s¢; ) = —log(1 — Dy,
(s, ar)). After performing the rollout with a given set of policy parameters 6, surrogate
rewards r(ss; ¥) are calculated and trust region policy optimization (Schulman 2015) is used
to perform the policy update. Although ¥(s;; ) may be different from the true reward func-
tion optimized by experts, it can be used to drive 7y into regions of the state-action space
similar to those explored by 7.

Unconstrained agent behavior

A variational autoencoder (VAE) is used to model the unconstrained agent behavior. VAE
trains two neural networks, the ‘encoder’ and the ‘decoder’. The encoder takes as input the
observed trajectories (sequence of states, s;) of unconstrained cyclists and its output is a
hidden latent representation space z. The latent dimension space z is a stochastic Gaus-
sian distribution from which samples can be drawn. The encoder process is denoted as
gy (z|s), where ¥ is the encoder network parameters. The decoder process acts in reverse
to the encoder, in which the input is the latent variable representation z and the output is
a reconstruction of unconstrained cyclist trajectories. The decoder network is denoted as
Py (s1z), where ¢ is the decoder network parameters. The structure of the VAE is illustrated
in Figure 5.

The VAE encoder and decoder are both defined by long-short-term-memory (LSTM)
units that are the same in number as the length of the input trajectory. This LSTM archi-
tecture allows for capturing the interdependence between sequential observations (short
term) and the overall interdependence between all the points constituting the trajec-
tory (long term). The latent variable layer contains the Gaussian distribution parameters
(mean u and standard deviation o). The neural network is mirrored to re-estimate the
observed trajectory states at each time step (5;), with the latent variable z calculated as
zZ=u+ o *¢€,¢e~N(0,1).This representation allows generation of samples from the net-
work (after training) simply by sampling a cluster and a value for the random normal
variable e.
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Model testing

Cross-validation testing is undertaken using a testing dataset of 20% of the observed trajec-
tories, randomly selected and removed from training. Simulations of the testing trajectories
are made using the estimated model, with starting states equivalent to the test data. Aggre-
gate distributions of both model variables (longitudinal distance, lateral distance, speed,
speed difference, direction angle, direction angle difference, and deviation from the center-
line) and emergent variables (jerk and acceleration) are compared between simulated and
observed trajectories to assess the accuracy and emergence of the model, and its ability to
represent heterogeneous behavior.

A two-dimensional Kolmogorov-Smirnov test is used to compare multidimensional
parameter distributions (Fasano and Franceschini 1987), with a 95% confidence thresh-
old to reject the null hypothesis that the density distributions of paired state features in
the simulated trajectories are drawn from the same distributions as the observed data.
Kullback-Leibler divergence (KL divergence) is also used to compare bivariate distributions
of state and action features between simulated and observed trajectory data. The KL diver-
gence between observed p(x) and simulated g(x) data is a measure of the information lost
when g(x) is used to approximate p(x), where x is the variable of interest, calculated:

0
Dk (p()llg(x)) = / p(x) log o
—0 q()
The information loss is measured in bits, a measurement unit for a distribution’s entropy.
The model is also evaluated by comparison to two other cyclist simulation models from
the literature, selected for their relevance to the modeling scope and representation of
alternative approaches to cyclist simulation (Jiang et al. 2016; Zhao et al. 2013). These mod-
els areimplemented and calibrated to the same dataset, and then the simulated trajectories
of all three models and observed cyclists are compared. The details of the comparison
models, calibration, and performance are reported in the penultimate section of the paper,
following the presentation of the proposed model results in the next section.

Results

The plots in Figure 6 give one realization of the estimated reward values over reward fea-
tures (left), along with histograms of observed frequency of feature values in the dataset
(right). Higher reward values imply preferred states for cyclists, all else equal. The relation-
ship between reward values and longitudinal distance shows a preference for longitudinal
(following) distance peaking around 5 m. There is also a preference for lateral distances near
zero (following directly behind the leading cyclist), and to be following toward the right ver-
sus toward the left (positive rather than negative lateral distance, at a given magnitude). The
reward over varying deviation from the path centerline also clearly indicates a preference
for staying on the right side of the path (as expected). A direction angle near zero (following
the path) is preferred, with a preference to turn left (toward the centerline) rather than turn
right (toward the right edge), based on the reward values at positive and negative direction
angles of similar magnitude.

Inferred speed preference peaks above 3 m/s (~ 11 kph), despite lower cycling speeds
being more common due the hindering presence of other cyclists. Reward decreases much
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Table 1. Cross-validation results comparing observed and simulated
distributions.

Lossin
KL information
Variable divergence bits
Longitudinal distance 0.80 8%
Lateral distance 1.51 14%
Speed 0.96 9%
Speed difference 0.45 6%
Direction angle 1.67 15%
Direction angle difference 1.22 12%
Centerline deviation 0.38 5%
Acceleration range (per meter) 0.35 6%

faster toward higher speeds than toward lower speeds, likely because the former requires
more pedaling power, whereas the latter requires less and so is easier to accomplish. Cyclists
also prefer to match the speed of a leading cyclist (speed difference near zero), but would
prefer to be going slower (negative difference) rather than faster, which requires them to
decelerate or overtake. A preference for low speed differences to leading cyclists is similar
to results reported in Ma and Luo (2016). Other inferred preferences are not compara-
ble to previous studies which only predicted longitudinal motion dynamics (Twaddle and
Grigoropoulos 2016; Zhao and Zhang 2017).

Cross-validation distribution analysis results are given in Table 1. KL divergence is low
and the loss in information for the simulated versus observed data range from 5% to 14%
across variables. Figure 7 gives observed and simulated bivariate density plots of state vari-
ables. Visual inspection reveals resemblance between the observed and simulated state
variable distributions. For example, the speed difference tends to decrease to zero as lon-
gitudinal distance approaches zero. Two-dimensional Kolmogorov-Smirnov tests fail to
distinguish between observed and simulated distributions at p < 0.05 for all variable pairs.

To illustrate the modeled heterogeneity in cycling paths, Figure 8 shows an arbitrary
observed trajectory and the distribution of 1000 trajectories simulated from the same initial
state and environment dynamics. The observed trajectory lies within the simulated tra-
jectory distribution. Variation in the simulated paths arises from the stochasticity in the
agent policy and state transitions. Stochasticity in the model allows inspection of how
heterogeneity varies along the path.

Overtaking maneuvers are the most dynamic behavior to model on unidirectional
cycling paths. Figure 9 gives a visual comparison of observed and simulated overtaking
patterns as heatmaps of the relative locations of overtaking cyclists with respect to the
leading cyclist’s position. Both observed and simulated heatmaps show a higher density of
overtaking maneuvers executed from the left of the originally leading cyclist. In addition,
an ‘influence area’ around the originally leading cyclist is observed as a lack of observa-
tions near the origin in both datasets, at about £1.6 m longitudinally and 0.4 m laterally
(increasing slightly at the overtaking position of dy = 0). These result shows that without
explicitly including cyclist dimensions in the model, the agents faithfully reproduce the
operating space of observed cyclists.

To get a sense of how the modeled behavior during overtaking maneuvers compares to
literature, the results are compared to Khan and Raksuntorn (2001), in which motion vari-
ables from video data of cyclists in following and overtaking interactions are extracted. In
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cyclist being overtaken at (dx, dy) = (0, 0).

that study, the average lateral distance during overtaking was 1.78 m compared to about
1m in our study (Figure 9). The difference in lateral distance could be due to different
cycling path widths (3 m in the Khan and Raksuntorn 2001 study versus 2.2 m in our study).

Variable density functions in Figure 7 are compared against a similar study (Gavriilidou
etal.2019) that used an analytical approach to assess how the preferences of cyclists toward
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taking certain actions change with relative motion variables. In that study preference for
lower deviation from the centerline was observed and implemented in their model, which
resembles our model predictions (Figure 7). Also, in another recent study (Paulsen, Ras-
mussen, and Ank 2019), in which the authors were trying to establish the effect of bicycle
traffic congestion on microscopic cycling behavior, it was observed that cyclists prefer to
move at higher speeds and speed differences when their longitudinal distances are higher,
which can also be seen in Figure 7.

Comparison to other models

To further assess the performance and benefit of the imitation learning model presented in
this paper, comparisons are made to two other cyclist simulation models from the literature.
These two models were selected because they have similar scope to the proposed model
and represent alternative state-of-the-art microsimulation methods. The first model (Jiang
et al. 2016) is based on the well-known cellular automata (CA) approach developed by
Nagel and Schreckenberg (2002). The model was originally developed from an experiment
in which multiple cyclists navigated an oval course. The second model (Zhao et al. 2013) also
uses the CA approach to model bicycle following and overtaking interactions, developed
from video data of a separated bicycle path. Unlike the first model which only represents
unidimensional following behavior, the second model simulates both longitudinal and
lateral movements.

The parameters of both comparison models were calibrated to the study dataset. The
Jiang et al. (2016) model predicts the longitudinal position of a cyclist at each 1-second time
step using the instantaneous speed. The instantaneous speed is updated each time step,
influenced by the longitudinal distances between successive cyclists, with a randomization
parameter. The calibration parameters are the maximum cyclist speed vmayx, the operating
distance between cyclists dop, and a third parameter d. reflecting the effect of a leading
cyclist’s distance on the following cyclist’s decisions. The Zhao et al. (2013) model updates
both longitudinal and lateral positions of cyclists at each time step from instantaneous lon-
gitudinal and lateral speeds, which are influenced by the relative longitudinal and lateral
positions of the following and leading cyclists. The model also has a randomization com-
ponent to the speed updating equations. There is just one parameter to calibrate, which is
the maximum speed Viay.

For this comparison, the parameters in the Jiang et al. (2016) model were calibrated to
the study path data set by enumerating values in appropriate ranges of the calibration
parameters and then calculating the root mean squared error (RMSE) between the x- and
y- locations (m) in the simulated vs. observed data for each combination of parameter val-
ues. The calibration parameter values that yielded the lowest RMSE were vipax = 5.2 m/s,
dop = 6m, and d. = 2m. The selected value of the randomization parameter p was 0.8,
based on the original paper. The parameter of the Zhao et al. (2013) model was calibrated
similarly with the result of a calibration value of vimax = 4.8 m/s. The selected value of the
randomization parameter p for the Zhao et al. model was 0.45, based on the original paper.

Figure 10 gives the distributions of motion variables for the observed data and for the
simulated output of the imitation learning model proposed in this paper and the two
calibrated comparison models (at 1-second intervals, N = 5645). The distributions of lon-
gitudinal distance, speed, speed difference and lateral distance from each model are based
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Figure 10. Motion variable distributions from observation and the three simulation models.

on a single realization (simulation run) for all interactions in the study data set. Overall, the
imitation learning model simulates the observed distributions of motion variables more
accurately than the comparison models. The Zhao et al. model has the poorest performance
for longitudinal distance, and the Jiang et al. model has the poorest performance for speed.
Both comparison models poorly represent the observed speed differences between leading
and following cyclists. The Zhao et al. model produces too wide a range of lateral distances,
while the Jiang et al. model does not represent the lateral dimension at all.

In addition to these differences in model performance, there are conceptual advan-
tages of the proposed imitation learning model. First, the proposed model represents the
behavior of cyclists in unconstrained and constrained states, and allows flexible transi-
tions between those states. In contrast, the comparison models do not explicitly model
unconstrained behavior and instead assume constant or randomly fluctuating speed for
‘free-flow’ cyclists, which further affects the simulated behavior of the following or over-
taking cyclists. The imitation learning model also explicitly represents heterogeneity in
both the environment and cyclist behavior. In contrast, the comparison models introduce
stochasticity simply with a random parameter in the speed updating process, which cannot
represent the systematic differences in physical, psychological and other characteristics of
cyclists.

To compare the stochastic performance of each model, 120 simulation runs for the entire
study data set were executed using all three models (imitation learning, Jiang et al., and
Zhao et al.). Figure 11 gives the resulting performance in terms of the mean absolute value
of the mean error (MAE) of the longitudinal distance variable for each simulated trajectory,
compared to the observed data. Each point in the figure gives the MAE for a single model
run on the entire dataset (i.e. the distributions in Figure 10 would yield a single point in
each column); thejitter plot randomly positions points in the horizontal direction to prevent
overlapping and improve visual interpretability. The imitation learning model has the most
consistently high precision, with an MAE under 3 m for all 120 runs, compared to almost
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Figure 11. Distributions of MAE over 120 runs of the entire data set by each model.

6 m for the Jiang et al. model and almost 8 m for the Zhao et al. model. The difference in
stochastic performance may be due to an overly simple representation of heterogeneity in
the comparison models.

Conclusion

This paper proposes and tests the applicability of generative adversarial imitation learn-
ing for estimating continuous, non-linear, and stochastic policies and reward functions for
cyclists in an agent-based simulation model. In addition these advancements, the model is
novel in predicting both longitudinal and lateral motion dynamics of interacting cyclists.
Cross-validation of the simulation model indicates realistic generation of modeled and
emergent variable distributions. The proposed model also outperforms two cyclist simu-
lation models from the literature representative of state-of-the-art alternative approaches.

A core contribution of this paper is the development of the novel approach to agent
policy estimation, with greater flexibility and fewer a priori assumptions than existing
approaches. This research aims to advance microscopic modeling of cyclists by following
an intelligent agent approach with a non-linear stochastic decision-making mechanism.
The model differentiates between two distinct types of cyclists (constrained and uncon-
strained). Constrained cyclist behavior and decision making are dependent on cyclist
personal characteristics, environment variables, motion variables of the constrained (fol-
lowing) cyclist, and relative motion variables between the following and the leading cyclist.
Unconstrained cyclist behavior is only dependent on the cyclist’s personal characteristics,
environment variables, and own motion variables. The paper follows a generative model-
ing approach (as opposed to discriminative approaches) in modeling interacting cyclists’
trajectories. Generative models are concerned with learning the internal multivariate dis-
tributions of model variables, while discriminative approaches identify the boundaries
between behavior schemes.
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The key limitation in the presented work is model testing in a single case study loca-
tion. The model application used short-distance observed trajectory data (around 25 m),
which precluded analysis of longer spatial patterns. It is a challenge to collect detailed tra-
jectory data over long distances from existing computer vision techniques. This limitation
could be addressed in future research by creating a longer-coverage dataset from two or
more synchronized cameras. Despite this limitation in the observed length of trajectories,
the imitation learning approach that uses memoryless MDP representation allows for mak-
ing inferences about behavior even from short sequences of observations. The memoryless
property means that agents use the estimated policies to take actions only based on the
current state. Also, the large number of trajectories allows for observing wide distributions
of motion variables that are used in the model (Figure 6).

Another limitation related to the video data is that it may not contain much variability in
some of the factors expected to influence cyclist behavior. Examples include cyclist socio-
demographics, variables related to cycling effort such as road grade, wind, and mass, as well
as factors relating to trip purpose and length, weather, and time of day. In this study, these
factors would likely manifest in the variability of the stochastic policy estimation.

Related to these limitations, essential future research tasks include applying and test-
ing the model in other locations, ideally with longer trajectories and augmented cyclist
attributes (both of which would require enhanced data collection methods). Applying the
model in other locations will allow further evaluation of different levels of model uncer-
tainty and generalizability, with investigation of variability at the cyclist and location levels.
Due to the unique nature of agent-based models, pattern-based validation methods should
also be considered for further model validation. Finally, there are several key paths for
future model development: most importantly extension to two-way paths and additional
agent types representing pedestrians and other ‘multi-use path’ users such as people on
skateboards, e-scooters, and other devices. By enhancing the representation of cyclist
heterogeneity in agent-based simulations, we believe that the proposed approach is a sig-
nificant methodological advancement toward more nuanced and sensitive analysis tools
in active transportation.
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