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comprehensive measures. The present study evaluates the impacts of network indicators,
land use, and road facility on BKT by developing zone-level ridership models. Land use and
road facility data were collected for 134 traffic analysis zones (TAZs) in the City of
Vancouver, Canada. In addition, graph theory was used to obtain bike network indicators
for each TAZ, including measures of connectivity, continuity, linearity, slope, and length
of the bike network. A full Bayesian approach, accounting for spatial random effects among
the TAZs, was used to develop the models. The results suggested that more connected,
dense, flat, continuous, recreational, and off-street bike networks yielded higher BKT.
Models that accounted for spatial effects were found to have better fit than those that
did not incorporate spatial effects, which implies the importance of considering spatial
effects while modeling BKT at the aggregate level. The models provide insights about the
factors that influence BKT and information about the spatial variability of the bike travel
within a city, which can be useful for planning bike networks.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many road authorities are promoting urban cycling to support sustainability initiatives, foster public health, and reduce
auto demand on congested streets. Expanding bike facilities, traffic calming, and accommodations for cyclists at intersec-
tions are among the transportation network-related policies usually adopted to encourage cycling (Buehler and Dill,
2016). Numerous studies have identified associations between cycling rates and bike infrastructure development (Nelson
and Allen, 1997; Dill and Carr, 2003; Parkin et al., 2008; Buehler and Pucher, 2012). In addition to the infrastructure effects,
various bike ridership models have shown that bike trips are positively associated with other variables such as proximity to
universities, flat terrain, employment density, and land use mix (Haynes and Andrzejewski, 2010; Ryan et al., 2010; Griswold
et al.,, 2011; Strauss and Miranda-Moreno, 2013).

Despite various studies linking cycling levels and bike counts at individual locations to a wide range of covariates, there
are no models of bike travel volume that can account for the combined impact of bike and roadway network characteristics
and land use at a zonal level. Modeling bike kilometers traveled (BKT) at a zonal level can provide information that isolated
bike counts and mode share data cannot capture. Count, mode share, and BKT data can have different spatial patterns and
different relationships with network configuration variables. Variation in BKT by zone reflects the aggregate spatial
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distribution of bicycle trip ends (origins and destinations) and route choices. Higher BKT is expected in zones with more
bicycle trip ends, longer bicycle trips, and infrastructure that attracts bicyclists on inter-zonal trips. BKT, like count data, does
not distinguish between induced and diverted travel, but BKT has the advantage of accurately reflecting net changes in travel
volume, whereas count data suffer from incomplete coverage.

Zonal BKT modeling can provide new intra-urban cross-sectional statistical evidence of the factors that most influence
cycling volume within a city. In addition, zonal BKT models estimate the spatial variability in cycling levels, which is useful
for strategic planning of active transportation investments and promotional programs. Spatial variability in cycling levels can
be more broadly related to accessibility, income, and health inequities. Zonal BKT estimates can be analyzed along with tra-
vel quantities by other modes (i.e., vehicle kilometers traveled and transit passenger kilometers traveled) to investigate
mode substitution not only by the number of trips but also by the cumulative travel distance. BKT models can be used in
the estimation of exposure to crash risk, physical activity levels, and air pollution inhalation. In addition, zonal BKT can
be used to visualize cycling levels and public engagement during strategic planning efforts.

The present study aims to develop zone-level bike ridership models that quantify the impacts of bike network, land use,
and road facility variables on BKT. City of Vancouver’s bike network is characterized as links and nodes, and graph theory
measures are used to obtain network indicators for the 134 traffic analysis zones (TAZs) within the city. Land use and road
facility data are also collected for the different TAZs. Full Bayesian analysis is undertaken accounting for spatial random
effects among the TAZs. The significant associations between the different variables and BKT are then investigated to propose
suitable recommendations to encourage cycling. Such recommendations can be used by transportation and planning orga-
nizations to target investments for optimum impact on existing and potential cyclists.

2. Literature review
2.1. Correlates associated with cycling levels

Several cross-regional studies found a positive association between the size and quality of the bike network and bike
commute share. Nelson and Allen (1997) found that each additional mile of bikeway per 100,000 residents was associated
with about 0.07% increase in bike commuters across 18 US cities. Dill and Carr (2003) used a dataset of 50 cities and found
that each additional mile of facility, per square mile of city area, was associated with 1% increase in bike commuting. Buehler
and Pucher (2012) also found out that a 10% increase in supply of bike lanes was associated with 3.1% increase in the number
of bike commuters per 10,000 residents. Klobucar and Fricker (2007) developed a bike network analysis tool to assess the
network-wide level of service offered to cyclists. The tool used route length and measures of perceived safety to quantify
the bike friendliness of a street network. Ryan et al. (2010) showed that cycling as a mode of transportation was correlated
with regional cycling patterns and the quality of the bike network.

Building a network that provides direct connections with minimal detours was also perceived as important by cyclists
because they were shown to be highly sensitive to distance (Handy and Xing, 2011). Discontinuities in the bike network
may have negative consequences such as forcing a cyclist into mixed traffic or a lengthy detour (Schoner and Levinson,
2014). Rietveld and Daniel (2004) modeled the bike share use in 103 cities in the Netherlands using several measures of
infrastructure quality to conclude that the number of stops and hindrances per kilometer on any given trip was negatively
associated with the bike mode share, which means that cyclists are sensitive to the speed and directness of their routes. The
utility of a dedicated infrastructure is also closely related to the level of connectivity it provides (Schoner and Levinson,
2014). Schoner and Levinson (2014) collected bike infrastructure maps for 74 US cities to evaluate the impact of network
structures on bike commuting rates. They used linear regression models after controlling for the demographic variables
and the size of the city. The models showed the importance of directness and connectivity in predicting bike commuting
rates. Mekuria et al. (2012) analyzed “low stress” networks and demonstrated the importance of connectivity through eval-
uating the quality of routes holistically by their weakest link rather than using a connectivity index, which is a quantitative
indicator for network connectivity. Winters et al. (2016) developed a bike score that represented bikeability in 24 US and
Canadian cities. They used a bike score that included bike lane score, hill score, and destination and connectivity score. They
found that the correlation between mean bike score and mean journey to work cycling mode share was moderate (r = 0.52)
at the city level, whereas at the census tract level, the correlation was 0.35.

Furthermore, various studies investigated the impact of different road facilities on the cycling levels. Wilkinson (1994)
recommended a network of bike lanes, separated paths, bike boulevards, and local streets to calm auto traffic and encourage
cycling. Parkin et al. (2008) found a positive significant association between the proportion of the off-street bike routes and
ridership. Furthermore, Caulfield et al. (2012) found that off-street trails and green lanes increased the chances of a route
being chosen by cyclists relative to a traditional bike lane. Marshall and Garrick (2011) showed that higher road classes
(i.e., arterials and collectors) were less friendly and perceived as less safe by cyclists. Other studies showed that the presence
of on-street parking reduced the utility of the bike lanes (Tilahun et al., 2007; Sanders, 2014). Fagnant and Kockelman (2015)
used Seattle metropolitan area cyclist count data from 251 locations to develop a direct demand model for estimating peak-
period cyclist counts and cycling-relevant roadway conditions. The model results showed the greatest practical significance
for intersections, curb-lane width (both are associated with higher counts), and roadway speed (associated with lower
counts).
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Lastly, different studies have discussed the relationship between traffic, socio-demographics, and land use variables and
cycling levels. Ryan et al. (2010) studied bike and pedestrian activity in San Diego County and its relationship to land use,
transportation, safety, and facility type. They showed that cycling as a mode of transportation was correlated with adjacent
land uses and regional cycling patterns. Schneider and Stefanich (2015) used census tract data in Wisconsin, USA, to show
that the bike commute share was positively associated with several socioeconomic and local environment characteristics,
including more households without automobiles, more people born in other states and countries, higher population density,
being located closer to a university, more housings constructed before 1940, and higher bike facility density.

2.2. Graph theory

Graph theory provides techniques for evaluating network quality and measuring its impact on travel behavior. Garrison
and Marble (1962) were the first to introduce graph theory principles to transportation geography. Kansky (1963) presented
indices that characterized network connectivity and complexity. Graph theory measures have been applied to the field of
transportation planning in several studies (Xie and Levinson, 2007; Derrible and Kennedy, 2009; Rodrigue et al., 2009;
Quintero et al., 2013; Quintero-Cano et al., 2014; Osama and Sayed, 2016). However, not too many studies used graph theory
measures to explain the travel behavior of nonmotorized road user. Dill and Voros (2007) found significant differences
between connected node ratios and people who biked during a certain period. Network quality and connectivity were also
evaluated at a micro level in the previous studies by investigating the individual discontinuities in on-street bike facilities
(Krizek and Roland, 2005; Birk and Geller, 2006; Barnes and Krizek, 2005). Berrigan et al. (2010) explained individual non-
motorized behavior by measuring the link-node ratio and other graph indices for a local street grid within short buffers
around survey respondents’ home addresses.

Although many studies have identified infrastructure, land-use, and socio-demographic correlates of bike counts or mode
shares, there has been little analysis of bike travel volumes (i.e., BKT) and intra-urban variability. To the best of our knowl-
edge, this is the first paper to evaluate the association of network, land use, and facility variables with cycling volumes at a
zonal level.

3. Data collection
3.1. Data sources

In the present study, zone-level models were developed to predict BKT for 134 TAZs in the City of Vancouver. The models
included explanatory variables that represented the bike network, road facility, and land use. Data from three main sources
were compiled using ArcGIS:

1. Translink, the Metro Vancouver transportation authority, provided the 2013 geocoded files of the bike network, road net-
work, and TAZ boundaries. Bike network included all types of bike facility (bike lanes, paths, etc.), whereas road network
included all the road facilities (i.e., local, collector, arterial, freeway roads) in the City of Vancouver.

2. City of Vancouver provided the land use zonings and contour map (1-m resolution) of the city.

3. Acuere Analytics provided the Vancouver Cycling Data Model (VCDM). The VCDM used bike counts between 2005 and
2011 to estimate the annual average daily bike (AADB) traffic in 2011 over the City of Vancouver bike network
(El Esawey et al., 2015), as illustrated in Fig. 1. The available data covered more than 810,000 hourly volumes over 7 years.
The model was efficient in estimating the AADB traffic on most links of the bike network (3180 links or more than 70% of
the network).

3.2. Analysis variables

Table 1 shows the set of variables included in the analysis. The dependent variable is BKT, calculated using the VCDM. The
VCDM provides bike volumes on most of the bike network links, which are then multiplied by the corresponding link length
to obtain link BKT. Link BKT is then aggregated (summed) for each TAZ. This process is not without limitations. The VCDM
was efficient at estimating cycling volumes for 70% of the bike network in the City of Vancouver; the estimated BKT is there-
fore subject to some uncertainty. However, this method is deemed more accurate than other speculated methods for calcu-
lating zonal BKT (e.g., multiplying bike mode shares in a TAZ by the average bike trip lengths) because it incorporates real
count data from links throughout the network. BKT as the dependent variable in our models is subject to measurement error,
which can increase the standard errors of estimated models, but will not bias the results assuming BKT is uncorrelated with
the independent variables. The independent variables in Table 1 are divided into three main categories: network indicators,
land use, and road facility.

Bike network indicators include the following six variables:

e Length (L) is calculated by summing the length of all the bike network links within each TAZ after using identity function
in ArcGIS to split the links among the different zones.
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Fig. 1. VCDM on the TAZs.
Table 1
Data summary statistics.
Variable Description Mean SD Min Max
BKT Thousand BKT 1.047 2.109 0 21.46
Network Indicators
L Total Length of Bike Network Links in TAZ (km) 3.37 2.52 0 17.40
Conn Degree of Bike Network Connectivity 0.38 0.11 0 1
Cov Degree of Bike Network Coverage 0.34 0.19 0 1
AvgEdLen Average Edge Length (Continuity) 0.13 0.05 0 0.57
Lin Linearity of the Bike Network 0.97 0.08 0.84 1
WSlope Average Weighted Slope for Bike Network 2.52 0.90 0.63 6.65
Land Use
Res Sum of Residential Zoned Areas in TAZ (km?) 0.35 0.33 0 1.59
Comm Sum of Commercial Zoned Areas in TAZ (km?) 0.033 0.035 0 0.21
Rec Sum of Recreational Zoned Areas in TAZ (km?) 0.13 0.39 0 3.66
Ar Total Area of the TAZ (km?) 0.87 0.74 0.052 5.31
Road Facility
Art Total Length of Arterial Roads in TAZ (m) 1678.12 1270.72 0 5745.53
Coll Total Length of Collector Roads in TAZ (m) 1397.59 1256.76 0 7185.40
Loc Total Length of Local Roads in TAZ (m) 8250.05 6530.40 0 30777.46
Fwy Total Length of Freeways in TAZ (m) 1523.34 795.50 0 2463.97
On_St Proportion of bike network links that are on-street 0.88 0.17 0.06 1

e Degree of Connectivity of the bike network (Conn) represents the ratio between the actual number of bike links in a TAZ
and the maximum possible number of bike links within the same TAZ (Kansky, 1963). According to graph theory, the
maximum possible number of bike links within a planar graph is calculated using Eq. (1), where n is the number of bike
nodes in the graph (Garrison and Marble, 1962). It should be noted that bike network links are joined using nodes that
represent any type of intersection such as traffic lights, pedestrian crossings, give ways, and so on.

Inax = 3(n — 2) (1)

The value of Conn is bounded between 0 and 1. A completely connected network will have a Conn equal to 1, whereas a
completely disconnected network will have a Conn equal to 0. The Conn indicator has been used in previous studies for eval-
uating transit networks (Derrible and Kennedy, 2011); (Quintero et al., 2013). However, two deficiencies are noticed upon
applying that indicator to the study of bike networks. First, the equation that is used to calculate [,,x should not be the same
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for all network shapes; rather, to estimate an accurate value for [y, the equation should vary from one graph to another
according to the network shape and nodes’ configuration. Moreover, Eq. (1) is not valid when the number of nodes is less
than 3. Therefore, a new indicator that can better represent the bike network connectivity is suggested.

The indicator is called the Degree of Network Coverage (Cov). Cov, shown in Eq. (2), evaluates the bike network coverage
of road network (Yigitcanlar and Faith, 2010). It assumes that [,.x, shown in Eq. (1), is the total number of road links within a
zone. This assumption is more practical than the one in Eq. (1) because the maximum possible number of bike links shall not
exceed the number of the road links within a zone. However, this indicator can be calculated only if the complete layer of the
road network is available, which is the case in the present study, and if not, the Conn variable could be used. Fig. 2 shows the
City of Vancouver bike network along with heat maps for both Conn and Cov by TAZ.

Number of Bike Links in TAZ

Cov = Number of Street Links in TAZ 2)

e The continuity indicator represents bike facility length without interruptions or hindrances. For calculating bike routes
continuity, a previous study by Scheltema (2012) proposed a manual methodology by counting every crossing along
the key bike routes. However, this methodology is inconvenient for macro-level studies. Therefore, continuity was rep-
resented in the present study as the Average Edge Length (Kansky, 1963) shown in Eq. (3), which is the ratio of the total
length of the bike network to the number of the bike links in each TAZ.

Total Length of Bike Network in TAZ

AvgEdLen = Number of Bike Links in TAZ 3)
e Linearity within a bike network was also previously quantified by Scheltema (2012) on a micro-level scale as the ratio
between the effective straight line and the crow line. In this macro-level study, linearity was calculated using Eq. (4)
as the ratio between the modified bike network length and the original bike network length in the TAZ, where the mod-
ified bike network is a hypothetical network in which all links are drawn straight (maintaining the original nodes). A
lower value of Lin represents more nonlinearity in the existing network. Fig. 3 shows the difference between the straight

and nonstraight links, where nonstraight links represent any curved or irregular link.

Lin— Total Length of the Modified Bike network in TAZ 4
B Total Length of the Bike Network in TAZ (

To modify the nonstraight links to straight ones, the bike network was exported from ArcGIS to AutoCAD software to
manage the separation of the nonstraight links from the straight links and modify the nonstraight links into straight ones.
Then, the network was imported back to ArcGIS to aggregate the length of the modified network links and assess the linear-
ity of each TAZ using Eq. (4). Fig. 4 shows the nonstraight links within the City of Vancouver bike network after being
imported from AutoCAD.

e The Average Weighted Slope of the bike network in each TAZ was calculated according to the following steps. First, the
absolute slope percentages along each bike link were averaged to compute the average slope of each link using the con-
tour map of the City of Vancouver, as shown in Fig. 5. Next, the slope at each link was given a weight relative to its length.

(a)

Fig. 2. (a) Connectivity of the bike network for City of Vancouver TAZs. (b) Coverage of the bike network for City of Vancouver TAZs.
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Fig. 4. Nonstraight links in the City of Vancouver bike network.

Finally, the average weighted slope of the bike links was calculated for each TAZ, as shown in Eq. (5), where [ represents
the link length, s represents the link’s slope, and n represents the number of links in the TAZ.

Sihxsi+bhxsy+-- +lxs,
Sih+bh+-+1

Average Weighted Slope in TAZ = (5)

For the land use category, the areas of commercial, residential, and recreational zonings were aggregated for every TAZ to
obtain the total area of each land use type. Ideally, actual land use data could be obtained for future work as zonings do not
always represent the actual land use. Fig. 6 shows the residential and recreational zoned areas within the City of Vancouver.

For the road network category, the total length of each road class (freeway, arterial, collector, and local roads) was aggre-
gated (summed) for the different TAZs. Fig. 7 shows the link-based road class inventory for the City of Vancouver. Arterial-
Collector proportion (ArtColl) was calculated by dividing the total length of the arterial and collector roads by the total length
of the entire road network, as shown in Eq. (6).

Total Length of (Arterials + Collectors)

ArtColl = Total Length of Road Network

(6)

The length of the on-street bike links was aggregated for each TAZ, and then the On-Street and Off-Street bike link pro-
portions were calculated as shown in Eqgs. (7) and (8), respectively. On_St represents the proportion of the bike facilities,
which are shared with the road, out of the whole bike network; whereas Off_St represents the proportion of the separated
bike facilities.

Total Length of On — Street Bike Links in TAZ ™
Total Length of Bike Links in TAZ

On_St =
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Fig. 6. (a) Recreational and (b) residential areas in the City of Vancouver.

Off St =1 — (on_St) (8)

Lastly, it should be noted that many variables, other than those mentioned above, were investigated during the study.
However, many of those variables were found insignificant in the BKT models because of the correlation between them
and other variables in the models, the insufficient sample size, or the weak relationship with BKT. Accordingly, they were

not included in the analysis. Those variables included employment density, commercial area density, household density,
and degree of connectivity.

4. Methodology
4.1. Linear regression models

The models in this subsection acted as a reference point for developing the full Bayes (FB) models afterward. In the pre-
sent study, modeling using ordinary least squares normal regression was found to better fit the data than other types of
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regression (i.e., lognormal regression). Initially, three categories of macro-level linear regression models were developed sep-
arately, including the network, land use, and facility variables. The significance of the variables was evaluated using p-values,
and the models’ goodness-of-fit was evaluated using adjusted R-Squared.

After separately testing the impacts of network, land use, and facility variables on BKT, combined models were developed
to combine the variables of the three categories to yield better predictability of BKT. The combined models included at least
one variable from each studied category. The procedure of selecting the independent variables for the combined model is a
forward stepwise procedure. Whether to add a variable to the model or not is decided based on two conditions. First, the
added variable should be significant (at a level higher than 90% at least). Second, the variable should improve the model
goodness of fit (R-Squared or deviance information criterion (DIC)).

4.2. Full Bayes models

Recently, Bayesian analysis using FB hierarchical statistical models has become more popular because of its flexibility and
its ability to use prior information, which results in improving the accuracy of the parameter estimates. Moreover, FB
analysis can provide more accurate measures of uncertainty on the posterior distributions of the parameters’ estimates
(El-Basyouny and Sayed, 2009). This ability is an advantage of the FB approach over the frequentist approach because the
latter does not consider uncertainty in the correlation structures, which sometimes yields an overestimation of the precision
of the parameter estimates associated with the covariates. Bayesian analysis was also found to be more suitable for spatial
models because of its ability to implement complex correlation structures (Aguero-Valverde and Jovanis, 2008).

4.2.1. Model specification

FB normal regression models were developed at a macro level for the present study. FB models could handle over-
dispersion in the data and account for random effects. First, BKT in zone i was assumed to follow a normal distribution with
error €, which is considered a random error accounting for the within-zone variability. aq is the intercept value, X; are the
explanatory variables, and b; are the model parameters. u; is a random error term to account for heterogeneity among TAZs.
This parameter is related to the site-specific attributes, accounting for between-zone variability, and follows a normal dis-
tribution as shown in Eq. (9).

BKT; = ag + Y "biXi + wifu; ~ normal(0, 57) (9)
i
Spatial models can then be formulated as shown in Eq. (10) by adding s;, which is a spatially correlated random effect for
zone i, suggesting that the random error for the sites that are close to each other should be correlated.

BKT; = ag + ZbiXi + Ui +S; (10)
i
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The spatial effects in the present study were accounted for by Gaussian CAR techniques (El-Basyouny and Sayed, 2009).
Let n;, C(i), 02, and S_; represent the number of neighbors of zone i, the set of neighbors of zone i, the spatial variance, and the
set of all spatial effects except S;, respectively. Therefore, S; can be formulated according to Eq. (11).

Si|S_i ~ normal( s; % 5 = Zi (11)
1~ —1 1y ni El 11— ) y ni
JeC()
Eq. (11) is based on an adjacency-based proximity measure. The conditional variance is inversely proportional to the
number of neighboring zones, and the conditional mean is the mean of the adjacent spatial effects.

4.2.2. Parameter estimation

Obtaining FB estimates requires the specification of prior distributions for the parameters, which reflect the prior knowl-
edge about the parameters under consideration. The prior may be informative or uninformative depending on the availabil-
ity of the prior information. The diffused normal distribution is the most commonly used prior to estimate the regression
parameters (El-Basyouny and Sayed, 2009). This distribution has a zero mean and large variance. In the present study, a dif-
fused normal distribution was used as the prior to estimate the regression parameters. For the dispersion parameter, ¢2, the
commonly used prior is a gamma distribution with precision parameters (7, ), and 0.001 was used as the value of 7. For the
Gaussian CAR models developed in the present study, the prior distribution of g2 was assumed a gamma distribution with
parameters (1 + X1[;/2, 1 +n/2), where [; is the term contributed by each zone and is calculated by Eq. (12).

Il' = n,'Si(Si — §1) (12)

The Markov chain Monte Carlo (MCMC) technique available in the WinBUGS tool was used to sample the posterior dis-
tribution and estimate the parameters. MCMC methods could sample from the joint posterior distribution repeatedly. This
technique generates sequences (chains) of random points, the distribution of which converges to the target posterior distri-
butions. A subsample is used for monitoring convergence and then excluded as a burn-in sample. Parameter estimation, per-
formance evaluation, and inference were obtained by the subsequent iterations.

Two chains were used to run each model in WinBugs, and 20,000 MCMC iterations were discarded as burn in samples (El-
Basyouny and Sayed, 2009). The chain convergences were thoroughly checked to ensure that the posterior distribution was
found, which indicated that the parameter sampling should begin. Convergence can be checked in several ways. First, two or
more parallel chains with diverse starting values are tracked so that full coverage of the sample space is ensured. The Bro
oks-Gelman-Rubin statistic is also used to check the convergence of multiple chains, where convergence occurs if the value
of the Brooks—-Gelman-Rubin statistic is less than 1.2 (El-Basyouny and Sayed, 2009). Moreover, convergence can be checked
by the visual inspection of MCMC trace plots of the model parameters. Finally, the ratios of the Monte Carlo errors relative to
the respective standard deviations of the estimates can be calculated as a measure of convergence. As a rule of thumb, con-
vergence occurs when these ratio values are less than 0.05.

After attaining convergence, another 20,000 iterations were performed for each chain. The summary statistics of the
developed model were then estimated, and the significance of the parameter estimates was tested at the 95% level using
credible intervals (El-Basyouny and Sayed, 2009).

4.2.3. Comparison of models with and without spatial effect

The purpose of performing the spatial analysis was to model the spatial correlations across zones. Spatial dependence can
be a surrogate for unknown and relevant covariates, thereby improving model estimation. The effects of spatial correlation
were calculated by computing the spatial variation proportion of the total random effects variation according to Eq. (13).

__a
=521 o2
o5 + 0y

(13)

where ¢? is the marginal variance of spatially correlated random effects, which can be directly estimated from the posterior
distribution of s, and 6?2 is the variance due to the uncorrelated random effects among the zones. Significant spatial corre-
lation exists when W is found to be greater than 0.5 (Aguero-Valverde and Jovanis, 2008). It should be noted that if the vari-
ance of the random error € is added to the denominator of Eq. (13), the W value will decrease to 0.45 which would still show
that the spatial effects account for a considerable share of the total random error. Models with and without spatial effects can
be compared on the basis of the DIC. As a goodness-of-fit measure, DIC is a Bayesian generalization of Akaike’s information
criterion, which penalizes larger parameter models. According to Spiegelhalter et al. (2002), differences of more than 10
might rule out the model with the higher DIC. Differences between 5 and 10 are substantial. If the difference in DIC is less
than 5 and the models make different inferences, then it could be misleading just to report the model with the lower DIC.
Previous studies have found that including spatial correlation would affect the parameter estimates by making some vari-
ables nonsignificant, although those variables were significant in the models without spatial effects (Karim et al., 2013).
Moreover, the regression coefficient of a highly significant variable might change because of the incorporation of spatial
effects. To check these two issues, the parameter estimates of the models with and without spatial effects were checked.
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5. Results

The next three subsections present the results for the BKT models using network, land use, and facility variables sepa-
rately. The fourth subsection includes models that combine all the aforementioned variable categories. Models that separate
the impact of each category on BKT are presented first before developing the combined models to evaluate the prediction
power of each category and its association with BKT solely. Moreover, it is interesting to study the impact of spatial effects
on the significance of the variables in each category separately. Results from three different modeling techniques are dis-
cussed in each subsection: linear regression, FB normal distribution, and FB normal distribution accounting for spatial
effects.

5.1. Network indicators models

Two models were included in this category as it was difficult to incorporate all the network indicators in one model
because of the correlations among some of the included variables (e.g., Average Edge Length is moderately correlated with
Linearity; and Weighted Slope is weakly correlated with Coverage). The off-street bike lanes can also be a property of the
bike network, but it was not added to the bike network models because of its correlation with some of the bike network
indicators such as Average Edge Length and Weighted Slope. For example, off-street bike links usually have better continuity,
so Off-Street Proportion would be highly correlated with Avergae Edge Length, resulting in multicollinearity within the
model.

Model 1 included three significant variables: Coverage, Average Edge Length, and Length. The linear regression model
yielded an adjusted R-squared of 0.30 and showed positive association between all the variables and BKT, as shown in
Table 2. Model 2 also included three significant variables: Weighted Slope, Linearity, and Length. Linear regression analysis
for this model yielded an adjusted R-squared of 0.28, as shown in Table 3. Weighted Slope is found to be negatively associ-
ated with BKT, contrary to both Linearity and Length.

The results for Average Edge Length and Coverage are plausible and in line with a previous study by Schoner and
Levinson (2014), in which they showed that connectivity and directness were positively associated with bike commuting
rates. In addition, the results for the Weight Slope and Length are intuitive because more bike infrastructure usually yields
more bike trips (Dill and Carr, 2003; Winters et al., 2016), whereas steeper slopes act as a disincentive for cyclists (Hood
et al., 2011; Winters et al., 2016). The coefficient of Linearity was negative, which suggests that more nonlinearity in the
bike network is positively associated with BKT. This nonintuitive result can be due to the fact that nonlinear bike links
in the City of Vancouver are usually off-street paths. Another explanation would suggest that more nonlinearity means
longer trips for the cyclists, which increases the BKT. It is worth mentioning that the impact of network linearity on BKT
is potentially different from its impact on bike trip counts, bike mode, and route choices; however, this is not within the
scope of the present study.

As for the FB models, the model with spatial effects showed better goodness of fit than the one without spatial effects (i.e.,
significantly lower DIC). Moreover, the spatial effects proportion of the overall random effects was considerably high
(\r = 0.99), which indicates that there is a spatial correlation between the BKT random effects in the adjacent zones. Including
the spatial effects reduced the statistical significance of both Cov and WSlope, making them nonsignificant at the 90% level in
the spatial effects models.

Table 2

Network indicators model 1.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> [t| Estimate SD Bayesian Estimate SD Bayesian

Estimate Confidence Interval Confidence
Interval
2.5% 97.5% 2.5% 97.5%

Intercept —2.04 0.0002 1.048 0.12 0.75 1.34 —1.596 0.54 —2.67 —0.53
L 0.389 <0.0001 0.389 0.061 0.268 0.511 0.43 0.065 0.30 0.56
Cov 2.042 0.0146 2.044 0.829 0.419 3.676 0.99 0.92 —0.87 2.74
AvgEdLen 8.307 0.0059 8.25 2.979 2.389 14.12 6.65 2.89 0.96 12.37
R-Squared 0.32
Adj R-Squared 0.30
DIC 536 499
a'ﬁ 0.004 0.023 0.00027 0.025 0.003 0.00047 0.0024 0.0042
a? 0.89 0.49 0.28 2.12
WV 0.99

All other variables were significant at 95% level or higher.
* Nonsignificant at 90% level.
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Table 3

Network indicators model 2.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr > |t] Estimate SD Bayesian Estimate SD Bayesian

Estimate Confidence Interval Confidence
Interval
2.5% 97.5% 2.5% 97.5%

Intercept 11.36 0.013 1.04 0.15 0.75 1.35 7.003 4.16 -1.15 15.17
L 0.403 <0.0001 0.40 0.06 0.28 0.52 0.46 0.061 0.34 0.58
WSlope -0.29 0.091 -0.29 0.17 —-0.62 0.049 -0.23 0.15 -0.54 0.07
Lin -11.14 0.015 -10.91 4.55 1.91 19.83 -7.03" 4.15 -1.09 15.18
R-Squared 0.30
Adj R-Squared 0.28
DIC 540.52 501.97
a2 0.003 0.008 0.00027 0.016 0.003 0.00047 0.0024 0.0042
a? 0.87 0.45 0.33 1.99
\] 0.99

All other variables were significant at 95% level or higher.
" Nonsignificant at 90% level.
" Significant at 90% level.

5.2. Land use models

Table 4 shows the parameter estimates of the land use models. Two variables were found significant: total area of the
recreational zonings and total area of the residential zonings. The total area of the commercial zonings was found to be non-
significantly associated (positive association) with BKT, so it was omitted from the model. The linear regression model
showed good fit with an adjusted R-squared equal to 0.49. The results are plausible as Recreational Areas were found to
be highly positively associated with BKT, whereas Residential Areas were found to be negatively associated with BKT. Several
studies showed that recreational areas would motivate commuters to undertake more trips by bike (e.g., Daley and Rissel,
2011), which was strongly affirmed by the study in hand. Conversely, residential areas can result in lower cycling levels, par-
ticularly if there is no specialized infrastructure that can support uninterrupted cycling (Kerr et al., 2016) or if there is a sheer
dominance of automobiles in those areas (Kim and Yamashita, 2002) that would make roads less friendly and less safe for
cyclists, particularly if there are no traffic calming policies applied (Pucher and Dijkstra, 2003; Pucher and Buehler, 2008).

Moreover, for this category of models, spatial effects model was found to better fit the data (significantly lower DIC), and
the spatial effects proportion of the overall random effects was considerably high (\y = 0.99).

It may be argued that the recreational and residential areas in the land use model 1 are acting as proxies for other factors
because they were included as absolute values. For example, recreational area may be considered as a proxy for less traffic in
recreational areas, whereas residential area may be considered as a proxy for suburban areas with poorer bike infrastructure.
Therefore, to confirm the associations between residential and recreational areas and BKT, another model was developed as
shown in Table 5, where the relative areas were used instead of the absolute areas (i.e., RecDen is the ratio between recre-
ational areas and the total zone area, whereas ResDen is the ratio between residential area and the total zone area). Although
it showed lower R-squared, Land use model 2 confirmed the association results of Land use model 1.

Table 4

Land use model 1.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> |t| Estimate SD Bayesian Estimate SD Bayesian

Estimate Confidence Interval Confidence
Interval
2.5% 97.5% 2.5% 97.5%

Intercept 1.10 <0.001 1.048 0.13 0.79 1.306 1.08 0.21 0.64 1.51
Rec 3.78 <0.001 3.78 0.34 3.11 4.45 3.63 0.33 2.98 4.30
Res -1.56 <0.001 -1.56 0.40 —2.34 -0.77 -141 0.51 —2.42 -0.39
R-Squared 0.498
Adj R-Squared 0.490
DIC 495 471
a2 0.020 0.15 0.00026 0.06 0.003 0.00047 0.0024 0.004
a? 0.53 0.27 0.25 0.61
\ 0.99

All variables were significant at 95% level or higher.
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Table 5

Land use model 2.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr>|t| Estimate SD Bayesian Estimate SD Bayesian

Estimate Confidence Interval Confidence
Interval
2.5% 97.5% 2.5% 97.5%

Intercept 1.10 0.082 1.04 0.15 0.74 1.35 0.43 0.39 -0.36 1.20
Area 0.52 0.037 0.52 0.25 0.03 1.02 0.70 0.26 0.19 1.23
RecDen 6.37 <0.001 6.36 1.32 3.76 8.97 5.49 1.26 3.00 7.97
ResDen -1.90 0.022 -1.90 0.83 -3.54 -0.26 -1.61" 0.91 —3.40 0.18
R-Squared 0.30
Adj R-Squared 0.28
DIC 540.80 471
a2 0.003 0.008 0.00026 0.016 0.003 0.00047 0.0024 0.004
a? 0.65 0.29 0.28 0.77
\s 0.99

All other variables were significant at 95% level or higher.
" Significant at 90% level.

5.3. Road facility model

Table 6 shows the results of the road facility model, where both arterial-collector roads proportion (ArtColl) and the off-
street bike lanes proportion (Off_St) are the included variables. Arterial-Collector Proportion is found to have a negative asso-
ciation with BKT, which is intuitive as arterial and collector roads are usually perceived by cyclists as less safe and less
friendly (Marshall and Garrick, 2011). However, the Off-Street Proportion variable was highly positively associated with
BKT, which agrees with several previous studies that showed that cyclists prefer using the off-street routes over the on-
street ones (e.g., Winters and Teschke, 2010; Winters et al., 2011; Larsen and El-Geneidy, 2011). Again, the models in this
category showed that spatial effects model has better fit (i.e., lower DIC) than the one that did not account for spatial effects
(lower DIC), and the spatial effects proportion of the overall random effects was also found considerably high (\y = 0.99).

5.4. Combined models

Finally, various models were developed to combine the variables from the different investigated categories, i.e., network,
land use, and road facility. The three models with the highest goodness of fit are presented in this section, as shown in Tables
7-9. The first combined model (Model A) included five variables: Length, Weight Slope, Recreational Area, Residential Area,
and Arterial-Collector Proportion. The model showed the best goodness of fit among the different tested models (adj R-
squared = 0.61, DIC = 449.89). The second combined model (Model B) included four variables: Coverage, Recreational Area,
Residential Area, and Arterial-Collector Proportion. It yielded an adj R-squared of 0.51, and DIC of 467. The third model
(Model C) also included four variables: Length, Recreational Area Density, Residential Area Density, and Off-Street Propor-
tion. The adj R-Squared for this model was equal to 0.42 and DIC equal to 487.50.

Table 6

Road facility model.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> [t| Estimate SD Bayesian Estimate SD Bayesian

Estimate Confidence Interval Confidence
Interval
2.5% 97.5% 2.5% 97.5%

Intercept 0.91 0.005 1.04 0.16 0.72 1.37 0.79 0.36 0.08 1.52
Off_St 5.46 <0.001 5.46 0.95 3.59 7.35 5.15 0.98 3.22 7.09
ArtColl -1.52 0.06 -1.52 0.81 -3.12 0.06 —1.06 0.90 —2.86 0.70
R-Squared 0.20
Adj R-Squared 0.18
DIC 557.25 538
a2 0.004 0.01 0.00024 0.03 0.003 0.00047 0.0024 0.004
a'f 0.48 0.18 0.24 1.17
r 0.99

All other variables were significant at 95% level or higher.
* Nonsignificant at 90% level.
" Significant at 90% level.
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Table 7
Combined model A.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> |t| Estimate SD Bayesian Confidence Estimate SD Bayesian
Estimate Interval Confidence Interval
2.5% 97.5% 2.5% 97.5%
Intercept 0.99 0.001 1.047 0.11 0.82 1.27 1.31 0.51 0.30 12.34
L 0.41 <0.001 0.41 0.07 0.27 0.54 0.38 0.07 0.23 0.51
Rec 2.32 <0.001 233 0.38 1.58 227 2.25 0.39 1.48 3.05
Res -3.38 <0.001 -3.35 0.48 -4.29 241 -2.85 0.55 -3.96 -1.76
WSlope -0.26 0.04 -0.26 0.13 -0.51 —-0.005 -0.19° 0.13 —-0.45 0.06
ArtColl -1.26 0.035 -1.38 0.66 -2.68 -0.09 -0.95 0.74 -2.42 0.49
R-Squared 0.62
Adj R-Squared 0.61
DIC 462.3 449.89
a2 0.0062 0.03 0.00025 0.04 0.0033 0.00048 0.0025 0.0044
a? 0.40 0.16 0.22 0.83
\s 0.99
All other variables were significant at 95% level or higher.
* Nonsignificant at 90% level.
Table 8
Combined model B.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> |t| Estimate SD Bayesian Estimate SD Bayesian
Estimate Confidence Interval Confidence Interval
2.5% 97.5% 2.5% 97.5%
Intercept 1.21 0.005 1.048 0.11 0.81 1.27 0.88 0.43 0.02 1.73
Cov 2.05 0.013 2.05 0.82 043 3.67 2.05 0.79 0.50 3.62
Rec 3.61 <0.001 3.60 0.33 2.95 4.26 3.51 0.33 2.86 417
Res -1.78 <0.001 -1.77 0.46 —-2.69 —-0.85 -1.50 0.52 -2.52 -0.46
ArtColl -2.01 0.012 -2.01 0.79 -3.59 -0.44 -1.31 0.83 -2.96 0.31
R-Squared 0.53
Adj R-Squared 0.51
DIC 489 467
a2 0.015 0.10 0.00027 0.06 0.0032 0.00048 0.0024 0.0043
a? 0.51 0.24 0.23 1.14
\3 0.99
All other variables were significant at 95% level or higher.
* Nonsignificant at 90% level.
Table 9
Combined model C.
Linear Regression Model FB Model FB Spatial Effects Model
Variable Parameter Pr> |t| Estimate SD Bayesian Estimate SD Bayesian
Estimate Confidence Interval Confidence Interval
2.5% 97.5% 2.5% 97.5%
Intercept -2.18 0.53 1.049 0.13 0.77 1.32 -0.19 0.39 -0.97 0.56
L 0.35 <0.001 035 0.06 0.22 0.47 035 0.06 0.22 0.47
RecDen 3.36 0.008 3.35 1.27 0.85 5.85 3.24 1.20 0.91 5.63
ResDen -1.62 0.031 -1.62 0.75 -3.09 -0.14 -1.42 0.85 -3.10 0.26
Off_St 2.44 0.010 2.44 0.94 0.56 430 1.79° 0.94 —-0.06 3.66
R-Squared 0.44
Adj R-Squared 0.42
DIC 512.65 487.50
a2 0.007 0.03 0.00026 0.046 0.0032 0.00047 0.0024 0.0043
a? 0.52 0.18 0.25 1.23
\] 0.99

All other variables were significant at 95% level or higher.
™ Significant at 90% level.
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The associations between the covariates used in the combined models and BKT agree with the results from the former
separated models. All the combined models showed better DIC under the spatial effects model than under the model without
spatial effects. Moreover, the spatial effects parameter (\y) was significantly high in all the combined models. However,
Weight Slope and Arterial-Collector Proportion variables became nonsignificant upon including the spatial effects.

Application of any of the three combined models for predicting BKT outside the City of Vancouver would be valid only if
the models’ transferability is tested, particularly when transferred to regions with substantially different levels of cycling or
cycling infrastructure. Although model A attained the highest BKT predictability in the City of Vancouver, it contained more
constraints than the other models, which would limit its transferability to other regions.

6. Conclusion and recommendations

This paper studied the impact of bike network, land use, and road facility on BKT at a zonal level. Models were developed
using data from 134 TAZs in the City of Vancouver, Canada. Linear regression and full Bayesian models with and without
spatial effects were used as modeling techniques. The developed models showed relatively good fit and revealed important
findings. Three bike network indicators (i.e., coverage, continuity, and length) were found to be positively associated with
BKT, contrary to the network’s slope and linearity indicators that were found to be negatively associated with BKT. In addi-
tion, recreational areas were found to be positively associated with BKT, in contrast to residential areas that were negatively
associated with BKT. Moreover, arterial-collector roads proportion was shown to be negatively associated with BKT, whereas
the proportion of off-street bike paths was positively associated with BKT. The ridership models that accounted for the spa-
tial effects showed better fit. This finding was supported by the significant value of the spatial variation proportion, which
would indicate the existence of spatial correlation between the BKT in the adjacent zones. This indicates the importance of
accounting for spatial effects when developing cycling ridership models at a macro level as ignoring them could lead to
biased results. This can also be an interesting future research area focusing on gaining better understanding of how the value
of BKT in a zone affects BKT from adjacent zones. In addition, further research is needed on proximity effects in modeling
intra-urban BKT at various levels of aggregation and on other spatial techniques of analyzing BKT such as hotspot analysis
and network-based pattern analysis.

These findings support past research suggesting that higher quality bike networks attract more riders. These models show
that within a single city, the more well-connected, continuous, flat, dense, recreational, and off-street zones of the bike net-
work are more heavily used, even after accounting for spatial correlation. Higher cycling levels in these zones likely reflect
the combined effects of increased bicycle trips (mode choice is influenced by infrastructure quality) and of bicyclist prefer-
ences for routes using infrastructure in these zones. As noted in the Introduction section, the BKT models cannot distinguish
between induced and diverted travel. There was high variability in BKT among TAZs (coefficient of variability, i.e., standard
deviation divided by mean, is approximately two), and more than half of that variance was explained by models using net-
work, land use, and facility variables. Thus, good estimates of BKT at the TAZ level can be generated by these relatively par-
simonious models. Zonal BKT estimates can be used in safety and health studies such as calculation of exposure to crashes,
physical activity, and air pollution. Furthermore, zonal BKT models can be beneficial in strategic planning applications to
identify deficient areas of a city in terms of bike network quality using the predictive network indicators.

Several areas of future research can be investigated based on the present study. First, additional variables can be inte-
grated in the ridership models to investigate further associations with BKT, including built environment variables (e.g.,
bus stops, traffic signals, and light poles, etc.), socio-demographic variables, additional facility characteristics (buffer type,
on-street parking, access points (driveways), lighting, surface type, intersection treatments, etc.), seasonality and time com-
ponents, street-related factors (e.g., speed limits, level of traffic stress, etc.), and additional bike network indicators that are
not correlated to the ones in the study such as betweenness centrality. Moreover, normalizing BKT into bikeability scores can
be beneficial for ranking different neighborhoods according to their friendliness to cyclists. The relationship between bike-
ability and bike network indicators can be a novel area of research. Finally, studying the transferability of the models by
applying them to other regions can be useful for validating the developed models and evaluating their accuracy.

References

Aguero-Valverde, Jonathan, Jovanis, Paul, 2008. Analysis of road crash frequency with spatial models. Transp. Res. Rec.: J. Transp. Res. Board 2061, 55-63.

Buehler, Ralph, Dill, Jennifer, 2016. Bikeway networks: a review of effects on cycling. Transp. Rev. 36 (1), 9-27.

Buehler, Ralph, Pucher, John, 2012. Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. Transportation 39 (2),
409-432.

Berrigan, David, Pickle, Linda W., Dill, Jennifer, 2010. Associations between street connectivity and active transportation. Int. J. Health Geogr. 9 (1), 1.

Birk, Mia, Roger Geller, 2006. Bridging the gaps: how quality and quantity of a connected bikeway network correlates with increasing bicycle use. In:
Transportation Research Board 85th Annual Meeting. No. 06-0667.

Barnes, Gary, Krizek, Kevin, 2005. Estimating bicycling demand. Transp. Res. Rec.: J. Transp. Res. Board 1939, 45-51.

Caulfield, Brian, Brick, Elaine, Thérése McCarthy, Orla, 2012. Determining bicycle infrastructure preferences - a case study of Dublin. Transp. Res. Part D:
Transp. Environ. 17 (5), 413-417.

Daley, Michelle., Rissel, Chris., 2011. Perspectives and images of cycling as a barrier or facilitator of cycling. Transp. Policy 18 (1), 211-216.

Dill, Jennifer, Voros, Kim, 2007. Factors affecting bicycling demand: Initial survey findings from the Portland, Oregon, region. Transp. Res. Rec.: J. Transp. Res.
Board 2031, 9-17.

Dill, Jennifer, Carr, Theresa, 2003. Bicycle commuting and facilities in major US cities: if you build them, commuters will use them. Transp. Res. Rec.: ].
Transp. Res. Board 1828, 116-123.


http://refhub.elsevier.com/S0965-8564(16)30504-3/h0005
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0010
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0015
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0015
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0020
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0030
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0035
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0035
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0040
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0045
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0045
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0050
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0050

28 A. Osama et al. / Transportation Research Part A 96 (2017) 14-28

Derrible, Sybil, Kennedy, Christopher, 2009. Network analysis of world subway systems using updated graph theory. Transp. Res. Rec.: J. Transp. Res. Board
2112, 17-25.

El-Basyouny, Karim, Sayed, Tarek, 2009. Urban arterial accident prediction models with spatial effects. Transp. Res. Rec.: ]. Transp. Res. Board 2102, 27-33.

El Esawey, Mohamed, Lim, Clark, Sayed, Tarek, 2015. Development of a cycling data model: City of Vancouver case study. Can. ]. Civ. Eng. 42 (12), 1000-
1010.

Fagnant, Daniel J., Kockelman, Kara, 2015. A direct-demand model for bicycle counts: the impacts of level of service and other factors. Environ. Plann. B:
Plann. Des. (0265813515602568)

Griswold, Julia, Medury, Aditya, Schneider, Robert, 2011. Pilot models for estimating bicycle intersection volumes. Transp. Res. Rec. 2247, 1-7.

Garrison, William L., Marble, Duane F., 1962. The Structure of Transportation Networks. No. TR62 11. Northwestern Univ Evanston Ill.

Handy, Susan L., Xing, Yan, 2011. Factors correlated with bicycle commuting: a study in six small US cities. Int. J. Sustain. Transp. 5 (2), 91-110.

Haynes, M., Andrzejewski, S., 2010. GIS based bicycle & pedestrian demand forecasting techniques. TMIP Webinar.

Hood, Jeffrey, Sall, Elizabeth, Charlton, Billy, 2011. A GPS-based bicycle route choice model for San Francisco, California. Transp. Lett. 3 (1), 63-75.

Karim, M., Wahba, Mohamed, Sayed, Tarek, 2013. Spatial effects on zone-level collision prediction models. Transp. Res. Rec.: ]. Transp. Res. Board 2398, 50—
59.

Klobucar, Michael, Fricker, Jon, 2007. Network evaluation tool to improve real and perceived bicycle safety. Transp. Res. Rec.: ]. Transp. Res. Board 2031, 25—
33.

Kansky, Karel Joseph, 1963. Structure of Transportation Networks: Relationships between Network Geometry and Regional Characteristics.

Kerr, Jacqueline et al, 2016. Perceived neighborhood environmental attributes associated with walking and cycling for transport among adult residents of 17
cities in 12 countries: the IPEN study. Environ. Health Perspect. 124 (3), 290.

Kim, Karl, Yamashita, Eric, 2002. Motor vehicle crashes and land use: empirical analysis from Hawaii. Transp. Res. Rec.: ]. Transp. Res. Board 1784, 73-79.

Krizek, Kevin J., Roland, Rio W., 2005. What is at the end of the road? Understanding discontinuities of on-street bicycle lanes in urban settings. Transp. Res.
Part D: Transp. Environ. 10 (1), 55-68.

Larsen, Jacob, El-Geneidy, Ahmed, 2011. A travel behavior analysis of urban cycling facilities in Montréal, Canada. Transp. Res. Part D: Transp. Environ. 16
(2), 172-177.

Marshall, Wesley E., Garrick, Norman W., 2011. Evidence on why bike-friendly cities are safer for all road users. Environ. Pract. 13 (01), 16-27.

Mekuria, Mazza C., Furth, Peter G., Nixon, Hilary, 2012. Low-Stress Bicycling and Network Connectivity.

Nelson, Arthur, Allen, David, 1997. If you build them, commuters will use them: association between bicycle facilities and bicycle commuting. Transp. Res.
Rec.: ]. Transp. Res. Board 1578, 79-83.

Osama, Ahmed, Sayed, Tarek, 2016. Evaluating the impact of bike network indicators on cyclist safety using macro-level collision prediction models. Accid.
Anal. Prev. 97, 28-37.

Parkin, John, Wardman, Mark, Page, Matthew, 2008. Estimation of the determinants of bicycle mode share for the journey to work using census data.
Transportation 35 (1), 93-109.

Pucher, John, Dijkstra, Lewis, 2003. Promoting safe walking and cycling to improve public health: lessons from the Netherlands and Germany. Am. J. Public
Health 93 (9), 1509-1516.

Pucher, John, Buehler, Ralph, 2008. Making cycling irresistible: lessons from the Netherlands, Denmark and Germany. Transp. Rev. 28 (4), 495-528.

Quintero, Liliana, Sayed, Tarek, Wahba, Mohamed M., 2013. Safety models incorporating graph theory based transit indicators. Accid. Anal. Prev. 50, 635-
644.

Quintero-Cano, L., Wahba, M., Sayed, T., 2014. Bus networks as graphs: new connectivity indicators with operational characteristics. Can. J. Civ. Eng. 41,
788-799.

Rietveld, Piet, Daniel, Vanessa, 2004. Determinants of bicycle use: do municipal policies matter? Transp. Res. Part A: Policy Pract. 38 (7), 531-550.

Rodrigue, J.P., Comtois, C., Slack, B., 2009. The Geography of Transport Systems. Routledge, New York.

Ryan, G.S., Donlan, J., Ledbetter, L., Arnold, L., Ragland, D., 2010. Seamless Travel: Measuring Bike and Pedestrian Activity in San Diego County and Its
Relationship to Land Use, Transportation, Safety, and Facility Type. Alta Planning and Design and Safe Transportation Research and Education Center,
University of California, Berkeley.

Schoner, Jessica E., Levinson, David M., 2014. The missing link: bicycle infrastructure networks and ridership in 74 US cities. Transportation 41 (6), 1187-
1204.

Sanders, Rebecca L., 2014. Roadway design preferences among drivers and bicyclists in the bay area. In: TRB 93rd Annual Meeting Compendium of Papers.
No. 14-5454.

Spiegelhalter, David J. et al, 2002. Bayesian measures of model complexity and fit. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 64 (4), 583-639.

Strauss, Jillian, Miranda-Moreno, Luis F., 2013. Spatial modeling of bicycle activity at signalized intersections. J. Transp. Land Use 6 (2), 47-58.

Schneider, Robert ]., Stefanich, Joseph, 2015. Neighborhood characteristics that support bicycle commuting: analysis of the top 100 US census tracts. In:
Transportation Research Board 94th Annual Meeting. No. 15-3320.

Scheltema, E.B., 2012. Manual ReCYCLE City: Strengthening the Bikeability from Home to the Dutch Railway Station. Delft University of Technology, Diss. TU
Delft.

Tilahun, Nebiyou Y., Levinson, David M., Krizek, Kevin J., 2007. Trails, lanes, or traffic: valuing bicycle facilities with an adaptive stated preference survey.
Transp. Res. Part A: Policy Pract. 41 (4), 287-301.

Wilkinson, William C., 1994. Selecting Roadway Design Treatments to Accommodate Bicycles.

Winters, Meghan et al, 2016. Bike Score®: associations between urban bikeability and cycling behavior in 24 cities. Int. ]. Behav. Nutr. Phys. Activity 13 (1), 1.

Winters, Meghan, Teschke, Kay, 2010. Route preferences among adults in the near market for bicycling: findings of the cycling in cities study. Am. J. Health
Promot. 25 (1), 40-47.

Winters, Meghan. et al, 2011. Motivators and deterrents of bicycling: comparing influences on decisions to ride. Transportation 38 (1), 153-168.

Xie, Feng, Levinson, David, 2007. Measuring the structure of road networks. Geogr. Anal. 39 (3), 336-356.

Yigitcanlar, Tan, Fatih, Dur, 2010. Developing a sustainability assessment model: the sustainable infrastructure, land-use, environment and transport model.
Sustainability 2 (1), 321-340.


http://refhub.elsevier.com/S0965-8564(16)30504-3/h0055
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0055
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0060
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0065
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0065
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0070
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0070
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0075
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0085
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0090
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0095
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0105
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0105
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0110
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0110
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0120
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0120
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0125
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0130
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0130
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0135
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0135
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0140
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0150
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0150
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0155
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0155
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0160
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0160
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0170
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0170
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0175
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0180
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0180
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0185
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0185
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0190
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0195
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0200
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0200
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0200
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0205
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0205
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0215
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0220
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0230
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0230
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0235
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0235
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0245
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0245
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0250
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0250
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0255
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0260
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0265
http://refhub.elsevier.com/S0965-8564(16)30504-3/h0265

	Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables
	1 Introduction
	2 Literature review
	2.1 Correlates associated with cycling levels
	2.2 Graph theory

	3 Data collection
	3.1 Data sources
	3.2 Analysis variables

	4 Methodology
	4.1 Linear regression models
	4.2 Full Bayes models
	4.2.1 Model specification
	4.2.2 Parameter estimation
	4.2.3 Comparison of models with and without spatial effect


	5 Results
	5.1 Network indicators models
	5.2 Land use models
	5.3 Road facility model
	5.4 Combined models

	6 Conclusion and recommendations
	References


