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Abstract
Walkability and bikeability indices are used to succinctly quantify how conducive an environment is to walking and cycling,
often including factors related to comfort and perceived safety. The potential assumption that ‘‘walkable’’ and ‘‘bikeable’’ mean
safe for walking and cycling (i.e., the association with objective safety or crash risk) has not yet been examined. This study
investigates the association between two widely used measures (walk score and bike score) and pedestrian and cyclist
crashes in Vancouver, Canada, to determine whether more walkable and bikeable areas of the city are also safer for walking
and biking, after controlling for exposure. Multivariate Bayesian crash models with random and spatial effects are developed
for pedestrian–motor-vehicle and cyclist–motor-vehicle crashes in 134 traffic analysis zones using 5 years of crash data with
walking, cycling, and motor-vehicle traffic volume controls for exposure. Results indicate that areas of the city with higher
walkability and bikeability can be potentially associated with greater pedestrian and cyclist crash risk, respectively, even after
controlling for exposure. While the clear answer is that neighborhood walkability and bikeability does not indicate safety for
pedestrians and cyclists, questions remain as to whether they should, and if so, how they could be modified to better incor-
porate objective risk.

Walking and cycling, as modes of urban transportation
with potential health and environmental benefits, are
promoted in cities around the world through initiatives
that include the provision and improvement of pedestrian
and cycling infrastructure. With increased attention on
active transportation, a robust literature has developed
examining associations between walking and cycling
activity and the built environment. The interdependence
and correlation of various attributes of the built environ-
ment that influence travel choices have resulted in the
creation of indices which succinctly quantify how condu-
cive an environment is to walking and cycling activity.
These walkability and bikeability indices are used in
research, transportation practice, and even real estate
services.

Figure 1 illustrates the conceptual framework for this
study. Diverse environmental factors influence walking
and cycling activity in various ways. To focus on the
scope of the study, In Figure 1, safety is separated from
all other considerations such as travel time, effort, and
weather. Safety as perceived by pedestrians and cyclists
can diverge from objective safety, although the two are
related and both negatively influenced by factors such as
motor-vehicle traffic. Ultimately, it is the perceived

safety (sometimes referred to as comfort) that influences
walking and cycling choices, rather than the objective
crash risk (which is not precisely known to travelers).
Previously developed walkability and bikeability indices
incorporate various environmental factors and have been
designed and validated by association with walking and
cycling activity (the dashed line in the figure). Some
indices include safety-relevant environmental factors,
such as the presence of bike lanes, but through the lens
of comfort or perceived safety (the pathway to activity
outcomes). What has not yet been examined is the asso-
ciation between walkability and bikeability indices and
objective safety or crash risk. There is likely to be an
implicit assumption (at least by the traveling public) that
walkable and bikeable means safe for walking and bik-
ing, but that might not be true.
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This study investigates the association between Walk
Score� and Bike Score� and pedestrian and cyclist
crashes, respectively, in the City of Vancouver, Canada.
Walk and Bike scores are selected as two of the most-
used and easily-accessed walkability and bikeability indi-
cators. The objective is to determine whether more walk-
able and bikeable areas of the city are also safer for
walking and biking, after controlling for exposure.
Motorist–pedestrian and motorist–cyclist Bayesian crash
models are developed for Vancouver’s 134 traffic analy-
sis zones (TAZ) using 5 years of crash data. The crash
models include walk and bike scores and traffic exposure
measures: vehicle kilometers traveled (VKT), bike kilo-
meters traveled (BKT), and walking trips.

Literature Review

Walkability Indices

An early quantitative measure of walkability was the
Pedestrian Environment Factor (PEF) (1). This was a
composite score of four three-point parameters: ease of
street crossings, sidewalk continuity, local street charac-
teristics, and topography. Points were decided on by the
reviewers and involved considerations such as block
length. PEF significantly correlated with auto ownership,
mode choice, and destination choice at the zone level.
While reviewers were trained, and reviewer scores were
relatively consistent, PEF was a subjective index of
walkability.

Later measures of walkability aimed for less subjective
criteria. Frank et al. developed a Walkability Index (WI)
to explain objective measures of physical activity. The
WI was calculated as a weighted sum of z-scores of net
residential density, street connectivity (intersection den-
sity), and land-use mix within a buffer (2). The WI was
found to explain variation in time spent in moderate
daily physical activity, beyond socio-demographic effects.
Kuzmyak et al. developed the Walk Opportunities Index

(WOI) to capture the effect of land-use factors on VMT
by household (3). The WOI was calculated based on
intersections and walk opportunities within a quarter-
mile of a household, and had moderate positive correla-
tion with several measures of household VMT.

The Pedestrian Environment Index (PEI) was devel-
oped to be an ‘‘easily computable measure of pedestrian
friendliness of neighborhoods’’ and was based on four
indices: land-use diversity (entropy), population density,
commercial density, and intersection density (4). These
indices were based on the sub-zonal level and are relative
to other zones; therefore, the PEI could only be used to
compare locations within a study area rather than com-
paring different study areas or zones in different cities.
Park et al. developed a composite WI at the street seg-
ment level by testing 42 variables describing categories
such as curb-to-curb roadways, pedestrian crossings, buf-
fer zones, sidewalks, sidewalk facilities, street scale and
enclosure, and nearby buildings and properties. These
were each tested for their statistical significance relating
to traveler perceptions of walkability using 13 measures
related to safety from traffic, safety from crime, comfort,
convenience, and visual interest. The index used 22 vari-
ables which were statistically significant, with weighting
for each variable based on correlation with the travel per-
ception scores (5).

Walk Score was developed to provide a numerical
score from 0 to 100 for a single address, based on the
built environment within a 1.5mi buffer. It considered
the importance of amenities in nine categories, based on
previous studies, as well as block length and intersection
density (6–8). Several studies have investigated the corre-
lation between Walk Score and other walkability mea-
sures and surveys and found varying degrees of positive
correlation (6, 9, 10).

Manaugh and El-Geneidy compared four walkability
indices at the census tract level in Montreal: Walk Score,
WOI, WI, and Pedshed Connectivity, and investigated
their association with home-based non-work walking
trips. They found that all indices had a significant posi-
tive correlation with walking trips. Walk Score explained
‘‘as much, if not more, of the variation in walking trips
to shopping than other walkability indices,’’ but different
indices better explained different types of walking trips
(11).

Bikeability Indices

An early study on bikeability introduced the Bicycle
Compatibility Index (BCI), which included nine factors
associated with road links (12). The model integrated
factors for bike lane availability, bike lane width, curb
width, traffic volume, traffic speed, parking, adjacent
development, and right turning vehicles. The BCI was

Figure 1. Study framework.
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intended to translate to a level of service (LOS), with dif-
ferent models based on cyclist experience level. Emery
et al. investigated the effects of several road and location
factors on bikeability and included speed, bike lane pres-
ence, curve frequency, severe grade, annual average daily
traffic (AADT), sidewalk presence, number of lanes, out-
side lane width, and sight distance in a more subjective
measure of quality (13).

Models of Bicycle Level of Service (BLOS) were devel-
oped in 2008 (14), which were later used in the Highway
Capacity Manual (HCM) 2010, along with pedestrian
level of service (PLOS). The BLOS and PLOS apply at
the segment, intersection, and facility levels. BLOS is
based on ten factors representing path width, vehicle
volumes, vehicle speeds, and pavement condition. Lowry
et al. conducted a review of various cycling LOS mea-
sures and developed a method to calculate the bikeability
of a zone based on an aggregation of facility LOS, con-
nectivity, and land use (15).

More recently, Bike Score was developed to measure
bikeability at a location based on a weighted combina-
tion of a bike lane score, hill score, destinations and con-
nectivity score, and a bike work mode share (8). These
sub-scores include bicycle facilities, topographical grade,
intersection density, block length, and amenities within a
buffer. An evaluation of Bike Score (modified to exclude
the mode share component) was found to be positively
associated with work trip bike mode share in 24 North
American cities (16).

Multivariate-Spatial Crash Models for Pedestrian and
Cyclist Safety

Recently, to mitigate problems resulting from unob-
served heterogeneity in crash models, new methods have
been developed to include spatial correlation and rela-
tionships among crash types (17, 18). Narayanamoorthy
et al. proposed a spatial multivariate count model to
jointly analyze pedestrian and cyclist crashes by severity.
The model was applied to predict injuries at the census
tract level in New York City, and results demonstrated
the importance of accounting for correlations between
modes and spatial dependence. More recent studies also
demonstrated the importance of accounting for spatial
and multivariate effects in crash models (18–20).

Lee et al. estimated multivariate and univariate crash
models for motorists, pedestrians, and cyclists at the scale
of TAZ (21). The models were developed using proxy
traffic exposure variables along with socio-economic and
road facility variables. The multivariate-spatial model
again outperformed the univariate spatial models and the
spatial error component significantly improved the model
performance.

Huang et al. proposed a multivariate-spatial model to
simultaneously analyze the occurrence of motor-vehicle,

bicycle, and pedestrian crashes at urban intersections.
The multivariate-spatial model outperformed the uni-
variate spatial model and the multivariate model, con-
firming the highly correlated heterogeneous residuals in
modeling crash risk among modes. The estimated var-
iance for spatial correlations of all three crash modes in
the multivariate and univariate models were statistically
significant, however, the correlations for spatial residuals
between different crash modes at adjacent sites were not
statistically significant (22).

Osama and Sayed investigated the effect of mode and
spatial correlations on the safety of active commuters.
They developed full Bayesian univariate and multivariate
models for pedestrian and cyclist crashes. The multivari-
ate approach allowed for including different covariates
for each modeled crash type. Exposure, land use, built
environment, socioeconomics, and network indicator
variables were used. The mode and spatial correlations
were found to significantly affect the crash models’ per-
formance (23).

Pedestrian and Cyclist Safety Correlates

Previous studies showed that cyclist/pedestrian crashes
were non-linearly and positively associated with the traf-
fic exposure variables, that is, BKT, VKT, and W respec-
tively. The exponents of the exposure measures were less
than one supporting the ‘‘safety in numbers’’ hypothesis
(24–27). The exponents of W and BKT were higher than
that of VKT showing the higher effect of the non-
motorized exposure on active transportation safety. The
results also showed that the increase in cyclist/pedestrian
crashes was associated with the increase in socio-
economic attributes such as employment and household
densities, and built environment attributes such as transit
stop and traffic signal densities. In the case of land use, a
positive association was found between cyclist/pedestrian
crash frequency and commercial area density, while both
residential and recreational area densities had negative
associations with crashes involving active commuters.
For road network facilities, higher cyclist/pedestrian
crash frequency was found to be associated with a
greater proportion of arterial and collector roads, while
a decline in those crashes was found to be associated
with the increase in the proportion of local roads. Cyclist
crashes were negatively associated with proportion of the
off-street bike links, and pedestrian crashes were nega-
tively associated with the pedestrian actuated traffic sig-
nals. Bike and sidewalk network connectivity indicators
(except pedestrian network coverage) were all found to
be positively associated with cyclist/pedestrian crashes
on the contrary of the continuity (except pedestrian net-
work linearity), infrastructure, and topography indica-
tors of the active transportation network, which were
found to be negatively associated.
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Methods

Data

Zone-level crash models are developed in this study using
data from 134 TAZs in the City of Vancouver. Walk
Score and Bike Score values for each TAZ are included
in the models, as well as VKT, BKT, and walk trips as
traffic exposure variables. Table 1 summarizes the vari-
ables used in the crash models.

Crash data for a 5-year period (2009–2013) were
obtained from the Insurance Corporation of British
Columbia (ICBC), the provincial automobile insurance
provider. Pedestrian–motorist and cyclist–motorist
crashes at three severity levels (fatality, injury, and prop-
erty damage only) were included in the analysis (loca-
tions shown in Figure 2). A 5-year period was selected to
collect an adequate sample size; total crashes (rather
than individual severity levels) were used as the depen-
dent variables for the same reason. Crashes located on
TAZ boundaries were distributed to the adjacent TAZ
according to the relative proportion of BKT or walk
trips in those zones.

VKT and walk trips in each zone were taken from the
EMME2 regional travel model, developed by the
regional transportation planning agency (TransLink)
based on 2011 household travel survey data and cordon
count (28). BKT by zone was drawn from the Vancouver
Cycling Data Model, which provides estimates of annual
average daily bike volumes (AADB) on links in the net-
work based on bike counts from 2005 through 2011 (29).

Walk scores and bike scores were retrieved from
www.walkscore.com. Preliminarily, for each TAZ, bike
and walk scores at arbitrary sample locations (around 30
locations) within the zone were manually extracted and
investigated. A walk/bike zone score was then computed
as the average of three values: the minimum score within
the TAZ, the maximum score within the TAZ, and the
mean of five evenly dispersed points in the TAZ. Figure 3
shows the calculated TAZ scores and the raw walk score
and bike score maps for the City of Vancouver, which

shows similar spatial patterns. There is high spatial auto-
correlation in the scores because they are calculated using
buffers, in addition to the spatial patterns of the actual
built environment.

Crash Modeling

State-of-the-practice univariate generalized linear model
(GLM) crash models were preliminarily developed to
investigate pedestrian and cyclist crashes separately.
Both crash modes were then combined in a multivariate
full Bayes (FB) crash model. Both approaches are
described in the following sections.

Univariate Generalized Linear Models. GLMs with non-
normal (negative binomial) error distribution are widely
used in crash modeling because conventional linear
regression models require error assumptions that cannot
adequately describe the random, discrete, non-negative,

Table 1. Summary of Data Variables (N = 134 TAZ)

Variable Mean Standard deviation Minimum Maximum

Crashes
Cyclist–motor-vehicle crashes over 5 years 12.71 13.48 0 78
Pedestrian–motor-vehicle crashes over 5 years 15.45 11.45 0 54

Exposure
Vehicle kilometers traveled (VKT) 4290 3315 189 22289
Bike kilometers traveled (BKT) 1048 2102 0 21463
Walk trips 3972 2677 247 13907

Indices
Bike score 88 9 48 99
Walk score 79 17 28 100

Note: TAZ = traffic analysis zones.

Figure 2. A heat map of pedestrian (yellow points) and cyclist
(red points) crash locations.
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and sporadic nature of crash occurrence (30). This study
employs a common crash model form that includes traf-
fic exposure measures V1i and V2i, and other non-
exposure explanatory variables, xni:

Yi = a0V
a1

1i V
a2

2i exp
X

bnxnið Þ

where Yi is the predicted collision frequency in zone i

and a0, a1, a2, and bn are estimated model parameters.
Pedestrian–motor-vehicle crashes are modeled using
walk trips and VKT as exposure measures, and the walk
score as the single non-exposure explanatory variable.
Cyclist–motor-vehicle crashes are modeled using BKT
and VKT as exposure measures, with bike score as the
single non-exposure explanatory variable.

Multivariate Full Bayes Model. FB analysis has been shown
to have several advantages over other techniques of crash
modeling (31). Poisson-lognormal multivariate models
incorporating random effects are used in this research
based on previous work showing that this approach is
suitable for active transportation safety analysis (21, 22,
25). The model is specified according to the following, as
developed and discussed by Osama and Sayed.

Y k
i ;Poisson lk

i

� �

lnlk
i = ak

0 + ak
1 lnV1i + ak

2 lnV k
2i +

X
bk

nxk
ni + uk

i + sk
i

where
Y k

i is the number of crashes of type k (pedestrian or
cyclist) in zone i,

Figure 3. Calculated walk and bike scores by traffic analysis zones (left)—raw walk and bike score maps from www.walkscore.com (right).

Osama et al 771



ak
0, ak

1, ak
2, and bk

n are estimated model parameters,
V1i and V k

2i are traffic exposure variables (VKT and
either walk trips for pedestrians or BKT for cyclists),

and xk
ni is a set of other non-exposure explanatory vari-

ables (which can vary by crash type).
Overdispersion caused by unobserved or unmeasured het-
erogeneity by zone is accounted for using uk

i , an unstruc-
tured random error term that follows a multivariate normal
distribution. Spatially structured error is accounted for
using multivariate Gaussian conditional autoregressive
(CAR) techniques, applied in the spatial error term sk

i .
The definition of the multivariate normal and multi-

variate CAR error structures is similar to past work (20).
For the multivariate k-dimensional (2 in this model) nor-
mal error, the diagonal elements of the variance–
covariance matrix

P
represent the variances, and the

off-diagonal elements represent the covariances. For
model estimation, the following prior is used:

P�1

;Wishart I ;Kð Þ, where I is the K 3 K identity matrix,
therefore:

uk
i ;Normal 0;

X� �
;
X
¼ s11 s12

s21 s22

� �
:

For the multivariate CAR model,

S1i; S2ið Þj S�1i; S�2ið Þ;Normal

ð�ski;
v

mi

Þ;v ¼
s s11 s s12

s s21 s s22

� �

where
S�1i; S�2ið Þ denotes the zones of the k 3 m matrix sk

i ,
excluding zone i,

mi is the number of zones adjacent to zone i, and
v is the variance–covariance matrix for spatial

correlation.
The diagonal elements of the covariance matrix v repre-
sent spatial variance; the off-diagonal elements represent
the spatial covariance of different severity levels. For

model estimation, the prior is assumed as
v�1;Wishart I ;Kð Þ, where I is the K 3 K identity matrix.

Markov Chain Monte Carlo (MCMC) is applied
using the WinBUGS tool to sample the posterior distri-
bution as well as to estimate the model parameters. The
MCMC method samples from the joint posterior distri-
bution repeatedly to generate sequences (chains) of ran-
dom points, the distribution of which converge to the
target posterior distributions. A burn-in run is used to
monitor convergence and is then excluded; parameter
estimation, performance evaluation, and inference are
based on subsequent iterations.

Two chains are used to run each model in WinBugs,
and 10,000 MCMC iterations are discarded as burn-in
samples. Afterward, 30,000 iterations are performed for
each chain. The summary statistics of each chain are
then estimated from WinBUGS and the convergences of
the developed models checked to ensure that the poster-
ior distribution has been found to begin parameter sam-
pling. Convergence is checked by tracking parallel chains
with diverse starting values to ensure full coverage of the
sample space, by the ratios of the Monte Carlo errors
relative to the respective standard deviations of the esti-
mates, by visual inspection of the MCMC trace plots of
model parameters, and by the Brooks–Gelman–Rubin
statistic (17).

Results

Tables 2 and 3 give the estimation results for the GLM
and FB crash models. The results are similar for both
modeling techniques, with all variables having positive
parameters (positive associations with crashes) for both
modes. The exposure variables all significantly increase
crash risk, as expected, with at least 95% confidence.
The exposure exponents are less than one, which affirms
the ‘‘safety in numbers’’ effect (i.e., positive but decreas-
ing marginal effect of volume on crash risk). The FB
multivariate model also shows a significant and positive

Table 2. Empirical Bayes Generalized Linear Model Crash Model Estimation Results

Parameter Estimate Standard error Pr . ChiSq

Pedestrian–motor-vehicle crashes Intercept 27.15 0.74 \0.0001
Walk trips 0.52 0.09 \0.0001
Vehicle kilometers travelled (VKT) 0.51 0.06 \0.0001
Walk Score 0.017 0.004 \0.0001
(Dispersion) 0.157 0.029 na

Cyclist–motor-vehicle crashes Intercept 24.86 0.95 \0.0001
Bike kilometers travelled (BKT) 0.57 0.06 \0.0001
Vehicle kilometers travelled (VKT) 0.23 0.08 0.0052
Bike Score 0.020 0.008 0.0094
(Dispersion) 0.393 0.061 na

Note: na = not applicable.
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correlation among crash modes for the spatial effects, as
expected.

Of particular importance is that walk score and bike
score are positively associated with pedestrian crashes
and cyclist crashes respectively, even when controlling
for walking, cycling, and motor-vehicle traffic volumes.
The walk score and bike score parameters are in the
range of 0.015–0.020 in both models, slightly lower in
the FB model controlling for spatial, random, and multi-
variate effects. The walk score parameters are significant
at 5% in both models, while the bike score parameters
are only significant at 5% in the GLM model (and signif-
icant at 10% in the FB model).

Discussion

The estimated walk and bike score effects indicate that
areas of the city with higher walkability and bikeability
(as indicated by walk and bike scores) are associated
with greater pedestrian and cyclist crash risk, respec-
tively, which is illustrated in both heatmaps of cyclist
and pedestrian crashes in contrast to the walk and bike
score heatmaps. This is potentially surprising, depending
on what walkability and bikeability are expected to rep-
resent. These indices are generally developed and vali-
dated based on walking and biking activity, as described
in the literature review. Active travel behavior is influ-
enced by safety concerns, and environmental factors that
increase perceived safety and comfort (facilities separated
from motor-vehicle traffic, for example) will also gener-
ally increase the objective safety of walkable/bikeable
neighborhoods as well (32). Another important finding
of that study was that the number of crashes was non-
linearly related to the average bike and vehicle daily traf-
fic, which confirms the safety in numbers phenomenon
(24–27).

On the other hand, there are environmental factors
that are conducive to walking and cycling but may reduce
safety. Destinations and commercial businesses are major
components of walkability and bikeability, and these

factors could increase crashes as a result of end-of-trip
events such as motor-vehicles turning and parking or more
distracting environments (25, 26, 33). Network connectivity
is another factor, used to calculate walkability and bike-
ability, that makes walking and cycling more attractive by
reducing travel times and distances, but can have adverse
effects on safety as a result of higher intersction density
and a larger number of conflict points (34–36). Therefore,
controlling for exposure, these components of walkability
and bikeability may offset the safety-related factors such as
separation from motor-vehicle traffic.

Despite the clarity of the results and the use of state-
of-the-art crash modeling methods, there are some limita-
tions relevant to the main finding that higher walkability
and bikeability is associated with lower pedestrian and
cyclist safety, which require more investigation through
further studies. A single set of walkability and bikeability
indices was examined; additional indices should be exam-
ined in future work, although walkability indices tend to
be highly correlated, and so the results are expected to
hold (11). The method of TAZ aggregation of walk and
bike scores was another limitation, although it probably
had little influence because of the strong spatial autocor-
relation of the scores. Future work should test other
methods of aggregation. Another consideration is that
the exposure controls (VKT, BKT, and walk trips) are
imperfect measures of actual exposure to crash risk.
Thus, some of the walk and bike score effects could be
the result of correlation with unmeasured exposure varia-
bility. Also, total crashes (rather than individual severity
levels) were used as the dependent variables to collect an
adequate sample size. Further studies with larger sample
size, where multivariate models accounting for different
severity levels can be used. Moreover, temporal autocor-
relation can be significant, especially for cyclist safety;
this could be addressed with more comprehensive data.
There could also be other factors that correspond to
neighborhood walkability/bikeability as well as pedes-
trian and cyclist safety, such as age and gender of the
local population (37, 38).

Table 3. Full Bayes Multivariate Crash Model Estimation Results

Parameter Mean Standard Deviation 95% Credible interval

Pedestrian–motor-vehicle crashes Intercept 26.98 0.86 (28.69, 25.32)
Walk trips 0.57 0.10 (0.37, 0.77)
Vehicle kilometers travelled (VKT) 0.46 0.08 (0.31, 0.60)
Walk Score 0.015 0.005 (0.006, 0.025)

Cyclist–motor-vehicle crashes Intercept 25.15 1.35 (27.80, 22.48)
Bike kilometers travelled (BKT) 0.38 0.08 (0.22, 0.52)
Vehicle kilometers travelled (VKT) 0.44 0.11 (0.22, 0.66)
Bike Score 0.016 0.009 (20.003, 0.034)
Mode correlation

because of spatial effects
0.500 0.224 (0.003, 0.828)
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The objective of this study was to assess whether
neighborhood walkability and bikeability also indicate
safety for pedestrians and cyclists. The clear answer is:
they do not. The next logical question is: should they?
Walkability and bikeability indices aim to combine many
factors to identify environments conducive to walking
and cycling, of which safety is just one component—
there must also be nearby destinations and other ele-
ments (39). Safety cannot be the only consideration,
because it is not the only concern of potential walkers
and cyclists. Still, it is somewhat counterintuitive to call
neighborhoods that are less safe for walking and biking
more walkable or bikeable.

A next step is to examine the degree to which walk-
ability and bikeability are associated with safety by prac-
titioners and the public. Perhaps there is not an expected
association, and current walkability and bikeability
indices suffice. If walkable and bikeable is understood to
imply safer, then the indices should be improved, or the
implication avoided. Objective safety could be introduced
into walkability and bikeability indices using long-term
average pedestrian and cyclist crash measures within a
specified radius. This approach would be objective, but
suffer from the common issues of using collision data in
analysis of active transportation safety, including the
omission of near-misses and unreported crashes.

In relation to practice, the findings must be viewed
from the perspective of association. The results should
not be interpreted as implying that making a neighbor-
hood less walkable or bikeable will make it safer—nor
that walkable and bikeable neighborhoods should be
avoided for walking and cycling. Improving the safety-
related components of walkability and bikeability (i.e.,
protected facilities) will increase both walkability/bike-
ability and safety.
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